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ABSTRACT 
 
Li, H.P., Chen, J., Zhao, Z.C. and Li, J.L., 2021. A multi-axial perfectly matched layer 
for finite-element time-domain simulation of anisotropic elastic wave propagation. 
Journal of Seismic Exploration, 30: 173-200. 
 

In order to effectively suppress the spurious reflections from the truncated 
boundaries in seismic numerical modeling, various perfectly matched layer (PML) 
absorbing boundary conditions have been developed in the past decades. The multi-axial 
perfectly matched layer (M-PML) attenuates seismic waves in the PML domain 
depending on the wave propagation directions, which remains efficient even under the 
situation of grazing incidences. To take advantage of the finite-element method (FEM) in 
dealing with the complex subsurface structure and irregular topography, we develop a 
nonconvolutional split-field M-PML based on the second-order elastic wave formulation 
to simulate the finite-element time-domain seismic wave propagation in this paper. The 
proposed M-PML algorithm requires fewer splitting terms and less storage space 
compared to the second-order M-PML in the literature. Three numerical experiments are 
carried out to illustrate the stability and efficiency of the newly proposed M-PML when 
used in the finite-element anisotropic elastic wavefield simulation with an irregular 
topography.  
 
KEY WORDS: multi-axial perfectly matched layer, finite element,  
    anisotropic elastic media, irregular free surface. 
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INTRODUCTION 
 
Seismic wavefield simulation plays a significant role in characterizing 

seismic wave propagation, seismic migration imaging and inversion. To 
reduce the size of the computational domain, various absorbing boundary 
conditions have been developed to suppress the artificial reflections from 
the truncated boundaries over the past decades, such as sponge absorbing 
boundaries (Cerjan et al., 1985; Sochacki et al., 1987), paraxial conditions 
(Stacey, 1988; Quarteroni et al., 1998) and optimized conditions (Peng and 
Toksöz, 1995). However, all of the conditions mentioned above behave 
poorly under some cases including the grazing incidence and anisotropy 
(Komatitsch and Tromp, 2003). 

  
The perfectly matched layer (PML) is first introduced by Bérenger 

(1994) in the electromagnetic wavefield simulation. Because of its high 
absorbing efficiency, it has been extended to various wave scattering 
problems, such as acoustic wave equation (Hesthaven, 1998; Nataf, 2005), 
and elastic wave equation (Chew and Liu, 1996; Collino and Tsogka, 2001; 
Komatitsch and Tromp, 2003). Although the PML shows effective 
absorbing performance, it has been reported by some researchers that the 
strong reflections can be observed from the artificial boundary at the grazing 
incidence and instability in anisotropic wave simulation may occur (Festa et 
al., 2005; Zhou et al., 2019). Kuzuoglu and Mittra (1996) argue that it is the 
non-causality of the constitutive parameters that leads to the instability of 
PML. The convolutional perfectly matched layer (C-PML) is then 
constructed to enhance the absorbing efficiency of the spurious wave at 
grazing angles (Kuzuoglu and Mittra, 1996). However, the C-PML is not 
applicable to wave simulation in certain anisotropic media (Matzen, 2011). 
To overcome the problems mentioned above, the multi-axial perfectly 
matched layer (M-PML) is proposed as a general form of the C-PML 
(Meza-Fajardo and Papageorgiou, 2008, 2010, 2012). It is verified that the 
M-PML is efficient and stable for all frequencies and independent of 
direction of wave propagation, and thus it performs better than the classical 
PML and C-PML for wave propagation using the first-order stress-velocity 
equations in both isotropic and anisotropic elastic media (Meza-Fajardo and 
Papageorgiou, 2008, 2010, 2012; Zeng and Xia, 2011; Ping et al., 2014). 

  
As a powerful numerical algorithm, the finite-element method (FEM) 

is well suited to solve seismic wave equation in heterogeneous medium 
enclosed by complex boundaries (Drake, 1972; Bao et al., 1998). The FEM 
overcomes some of limitations of other numerical methods (Komatitsch et 
al., 2010). For example, the conventional finite-difference method (FDM) 
suffers from numerical dispersion caused by the use of coarse grid or the 
existence of high-velocity contrast (Bohlen and Saenger, 2006), and it 
cannot deal with the irregular surface directly with high numerical accuracy 
(Lan and Zhang, 2011); the spectral-element method (SEM) possesses great 
difficulty in subdividing a very complex geological model, although it can 
achieve high computational efficiency and accuracy (Hesthaven and Teng, 
2000; Giraldo and Taylor, 2007; Afanasiev et al., 2019). In comparison, in 
FEM the rugged surface and complex subsurface structure can be handled 
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easily, where the free boundary condition is naturally satisfied (Liu et al., 
2014b). However, the requirements for large memory and solving a large 
linear system at each time step decrease its computational efficiency and 
make it less popular among geophysical studies (Marfurt, 1984; Padovani et 
al., 1994; Liu et al., 2014a). To reduce memory usage and avoid solving a 
large linear system, the sparse matrix storage scheme such as the 
compressed sparse row (CSR) method and the so-called lumped mass 
technique can be adopted, despite the accuracy will be reduced to some 
extent (Richter, 1994; Archer, 2005; Wu, 2006; Meng et al., 2017). 

 
The M-PML proposed by Meza-Fajardo and Papageorgiou (2008) for 

elastic wave equation is originally formulated as the first-order 
velocity-stress scheme. While the FEM is based on the second-order 
governing equation, the implementation of the first-order M-PML scheme is 
not straightforward. Compared with the second-order M-PML system, the 
first-order formulation requires more computing resources to store and 
compute the additional unknown stresses apart from displacements. 
Therefore, the construction of the second-order M-PML formulation is 
desired for FEM simulation. The second-order split-field PML equation was 
first introduced by Komatitsch and Tromp (2003) in elastic media, and it is 
verified to be efficient to absorb both body and surface waves. The FEM 
implementation of the second-order PML equation is later reported by Liu 
(2014), while their study is limited to the isotropic medium. Li and Matar 
(2010) develop a non-split C-PML for the second-order mixed wave 
equation, but the instability problem for simulation in anisotropic media still 
exists. Ping et al. (2014) propose the split-field M-PML for the second-order 
wave equation, and they obtain stable simulations for anisotropic media and 
overcome the late-time instability problem using SEM. In their second-order 
M-PML system (referred as M-PML-S), each wavefield is split into five 
nonphysical components in the non-overlapping M-PML domain and seven 
in the overlapping M-PML domain (corner region) for the SEM 
implementation. 

  
However, to our best knowledge the implementation of the 

second-order M-PML equation using the FEM has not been reported 
explicitly. Therefore, in this paper, we introduce a novel split-field 
second-order M-PML for the FEM method in dealing with time-domain 
seismic wavefield simulation in anisotropic elastic media with irregular 
surface conditions. We further optimize the second-order M-PML 
formulations by reducing the split displacement components to three in both 
non-overlapping and overlapping M-PML domains, and test its efficiency 
and stability in model studies. 

 
 
THEORY 

 
The elastic wave equation is defined by Cauchy’s equations of motion 

and the generalized Hooke’s law (Aki and Richards, 2002). The 
second-order elastic wave equation without source term in the time domain 
can be written as: 
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   ( )2 :t Cρ∂ =∇⋅ ∇u u   ,             (1) 

where ρ  represents density, u  is the displacement, ∇  is the spatial 
gradient operator, C  is the elastic tensor, and :  represents a contraction 
over adjacent indices. Eq. (1) can be written in the frequency domain as: 

            ( )2 :Cρω− =∇⋅ ∇u u   ,                (2) 
where ω  denotes the angular frequency. For convenience, the 
displacement vector u  in the frequency domain takes the same form as 
that in the time domain. In order to investigate the absorbing efficiency of 
the M-PML, the plane-wave solutions of equation (1) can be termed as: 

            exp[ ( )]i tω= − ⋅ −u A k x   ,   (3) 

where A  represents the constant polarization vector, i  represents the 
imaginary number unit, k  denotes the wavevector, and x  denotes the 
position vector. Assume the normal to the interface between regular domain 
and the PML layer is expressed as n̂ , and the coordinate in the direction of 
increasing n̂  is defined as n . Thus, the spatial gradient operator can be 
split into the perpendicular and the parallel components to the interface 
between the regular domain and the PML region: 

             
||ˆ n∇ = ∂ +∇n   ,    (4) 

where ˆn∂ = ⋅∇n  and ( )|| ˆ ˆ ˆ m∇ = − ⋅∇ = ∂I nn m , I  denotes the 2×2 
(3×3) identity tensor in 2D (3D) case, and ( )ˆ ˆ−I nn  denotes the projection 
operator to the surface with normal n̂ , which can also be termed as the 
vector m̂ . 
 
 
The M-PML formulation 

 
Based on the well-known concept of complex stretching coordinate 

introduced by Chew and Weedon (1994), the classical PML formulation 
attenuates waves across the PML region. The variable in the complex 
stretching coordinate is expressed as: 

             !n (n ) = n −
i
ω

d
0

n
∫ s( )ds

  
,    (5) 

with the corresponding differential form of 

             
∂n
∂ !n

=
iω

iω +d (n ) ,  (6) 

where ( )d n  is referred as the damping profile across the PML region, and 
n is the distance of an computational point to the inner interface of PML 
domain. In the classical PML, d(n), is defined as a function of distance n. 
While the other two damping profiles, i.e., d(m) and d(l) remains zeros 
across the PML region. 
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              ( ), 0, 0n m ld d n d d= = =    .  (7) 
 
In order to attenuate waves from different directions, the damping 

profiles in the proposed M-PML method should be specified as functions of 
the n variable: 

 
 ( ) ( ) ( )( ), ( ), ( )n n n

n n m m l ld d n d d n d d n= = =    .   (8) 
 
As introduced in Meza-Fajardo and Papageogiou (2008), the newly added 
damping profiles ( ) ( )n

md n  and ( ) ( )n
ld n  are selected to be proportional to 

( ) ( )n
nd n , given by: 

 
    ( ) ( )/ /( ) ( ) ( ) ( )( ) ( ), ( ) ( )m n l nn n n n

m n l nd n p d n d n p d n= =   ,  (9) 
 
 
where the ratios of the damping profiles ( )/m np  and ( )/l np  are constants for 
fine-tuning the stability of the M-PML region. The design of damping 
profiles of an M–PML can be regarded as a medium with complex wave 
vectors instead of a medium of complex space variables. The generalization 
of the damping properties grants more regular properties to the M-PML, so 
that it is capable of damping waves from all directions. The M-PML can be 
obtained by the following transformation: 
 

 !kn = kn +
1
iω

αn
(n )kn , !km = km +

1
iω

αm
(n )km , !kl = kl +

1
iω

αl
(n )kl  

,  (10) 

 
where the introduced functions ( )n

nα  , ( )n
mα  and ( )n

lα  are related to the 
damping profiles ( )n

nd  , ( )n
md  and ( )n

ld , respectively, with their expressions 
given as follows: 

    ( )( ) ( ) ( ) ( ) ( ) ( )

0

1 d , ( ), ( )
nn n n n n n

n n m m l ld s s d n d n
n

α α α= = =∫   
.  (11) 

 
By substituting the transformations of eq. (11) into eq. (3), the M-PML 

formulation allows the following form of plane-wave solution: 

    exp( )exp[ ( )]i tα ω= − ⋅ − ⋅ −u A x k x   , (12) 
with 

  [ ]n n n
n n m m l le e eα α α α

ω
=
k

   
,           (13) 

where the direction cosines of wave vector k  are expressed as ne , me , 
and le , respectively. The modulation factor exp( )α− ⋅x  indicates that the 
decaying direction of the wavefields is consistent with the direction of the 
wave vector in the M-PML region. While the decaying direction in the PML 
region is independent on the wave vector and always keeps same with the 
direction of n. It explains why the M-PML still remains efficient for grazing 



 178  

incidences. According to the complex stretching relationship in eq. (6), the 
transformations for M-PML using the coordinate stretching approach in the 
PML region can be written as: 

 !n = n + 1
iω

αn
(n )n ,    (14) 

 !m =m + 1
iω

αm
(n )m ,  (15) 

and 

 !l = l + 1
iω

αl
(n )l .   (16)      (16) 

The corresponding stretching factors are (Meza-Fajardo and Papageorgiou, 
2008) 

 sn =
∂ !n
∂n

=1+ 1
iω

αn
(n ) =1+d n

(n ) (n ) ,  (17) 

 sm =
∂ !m
∂m

=1+ 1
iω

αm
(n ) =1+dm

(n ) (n ) ,  (18) 

and 

 sl =
∂l!

∂l
=1+ 1

iω
αl
(n ) =1+d l

(n ) (n ) .  (19) 

For the overlapping M-PML domain (corner region), the treatment in 
the newly proposed M-PML is similar to that in the M-PML developed Ping 
et al. (2014). But the number of split terms remains the same as that in the 
physical domain without introducing more split terms. 

 
 

M-PML for Second-order Wave Formulation 
 
For simplicity, here we consider the 2D case. The boundary between 

the interior physical domain and the M-PML region is assumed to be a 
straight line with the normal direction indicated by n̂  and the parallel 
direction m̂ . In order to make the wavefield decays in all directions of the 
wave vector k  as suggested in eq. (12), the split form of gradient operator 
in eq. (4) needs to be further modified. The parallel component of the 
gradient operator can be rewritten as: 

 
 ∇|| =m!∂m   .  (20) 

 
In the 2D case, the damping profiles in the non-overlapping M-PML 

region can be written as: 
 

 ( )nd d n=  and ( )/ ( )m n
md p d n=    . (21) 
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 While in the overlapping region, the damping profiles become: 
 
 ( )/( ) ( )n m

nd d n p d m= +  and ( )/( ) ( )m n
md d m p d n= + . (22) 

 
Thus, the coordinate stretching transformations for the non-overlapping 
M-PML region can be expressed as: 

 
∂n
∂ !n

=
iω

iω +d (n )  (23) 

and 

 
∂m
∂ !m

=
iω

iω +d (m ) .  (24) 

Their derivatives have the following forms 

 
∂
∂n

∂n
∂ !n
⎛

⎝
⎜

⎞

⎠
⎟= −

iω
(iω +d (n ))2

∂d (n )
∂n ,  (25) 

∂
∂n

∂m
∂ !m
⎛

⎝
⎜

⎞

⎠
⎟= −

iω
(iω +d (m ))2

p m /n( ) ∂d (n )
∂n , (26) 

 
∂
∂m

∂m
∂ !m
⎛

⎝
⎜

⎞

⎠
⎟= 0   (27) 

and 

 
∂
∂m

∂n
∂ !n
⎛

⎝
⎜

⎞

⎠
⎟= 0 . (28) 

In the overlapping region, ∂
∂n

∂n
∂ !n
⎛

⎝
⎜

⎞

⎠
⎟  and ∂

∂n
∂m
∂ !m
⎛

⎝
⎜

⎞

⎠
⎟  hold the same forms as 

those in the non-overlapping domain. Owing to the additional parts from the 

other space coordinates, the derivatives ∂
∂m

∂m
∂ !m
⎛

⎝
⎜

⎞

⎠
⎟  and ∂

∂m
∂n
∂ !n
⎛

⎝
⎜

⎞

⎠
⎟  hold 

different forms: 

 
∂
∂m

∂m
∂ !m
⎛

⎝
⎜

⎞

⎠
⎟= −

iω
(iω +d (m ))2

∂d (m )
∂m ,  (29) 

and 
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∂
∂m

∂n
∂ !n
⎛

⎝
⎜

⎞

⎠
⎟= −

iω
(iω +d (n ))2

p n /m( ) ∂d (m )
∂m .           (30) 

 
 Replacing the split gradient operator written in terms of n  and m  with 
the generalized variables n̂  and m̂ , the M-PML formulation can be 
written as: 

 ∇ = n∂ !n +m∂ !m .    (31) 
 
Based upon the splitting of the gradient operator above, the second-order 
M-PML formulation in frequency domain can be expressed as: 
 

−ρω 2u = n̂∂n ⋅ C : n̂∂nu( ) ∂n / ∂ !n( )
2
+ n̂ ⋅ C : n̂∂nu( ) ∂n / ∂ !n( )∂n ∂n / ∂ !n( )

+n̂∂n ⋅ C :∇
||u( ) ∂n / ∂ !n( ) ∂m / ∂ !m( )+ n̂ ⋅ C :∇||u( ) ∂n / ∂ !n( )∂n ∂m / ∂ !m( )

+∇|| ⋅ C : n̂∂nu( ) ∂m / ∂ !m( ) ∂n / ∂ !n( )+ m̂ ⋅ C : n̂∂nu( ) ∂m / ∂ !m( )∂m ∂n / ∂ !n( )
+∇|| ⋅ C :∇||u( ) ∂m / ∂ !m( )

2
+ m̂ ⋅ C :∇||u( ) ∂m / ∂ !m( )∂m ∂m / ∂ !m( )

 .

 (32) 
 
The traditional treatment for the above equation is to split each 

displacement into several nonphysical parts. Ping et al. (2014) introduced 
the second-order M-PML formulation by splitting each displacement into 
five parts in the non-overlapping M-PML region and seven in the 
overlapping region, with the additional auxiliary variables introduced to 
avoid the third derivative of time. To avoid the special treatment for the 
corner region of the M-PML, we hereafter rewrite the M-PML formulation 
to develop a more general second-order M-PML formulation by introducing 
only three split terms for both non-overlapping and overlapping M-PML 
regions. The three split terms are: 

 = + +1 2 3u u u u .                     (33) 

Thus, we have 

−ρω 2u1 = n̂∂n ⋅ C : n̂∂nu( ) ∂n / ∂ !n( )
2
+ n̂ ⋅ C : n̂∂nu( ) ∂n / ∂ !n( )∂n ∂n / ∂ !n( )

+m̂ ⋅ C : n̂∂nu( ) ∂m / ∂ !m( )∂m ∂n / ∂ !n( )
,     (34) 

−ρω 2u2 = n̂∂n ⋅ C :∇
||u( ) ∂n / ∂ !n( ) ∂m / ∂ !m( )+∇|| ⋅ C : n̂∂nu( ) ∂m / ∂ !m( ) ∂n / ∂ !n( ) ,    (35) 

and 
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−ρω 2u3 =∇
|| ⋅ C :∇||u( ) ∂m / ∂ !m( )

2
+ m̂ ⋅ C :∇||u( ) ∂m / ∂ !m( )∂m ∂m / ∂ !m( )

+n̂ ⋅ C :∇||u( ) ∂n / ∂ !n( )∂n ∂m / ∂ !m( )
.  (36) 

 
By converting the M-PML formulations into the time domain and 
introducing auxiliary variables, the following equations are then derived: 
 
      ( )2

1 2ˆ ˆ[ ( )] :t n nd n Cρ ρ ρ∂ + = ∂ ⋅ ∂ + +1u n n u p p ,           (37) 
 
      ( ) ( )|| ||ˆ ˆ[ ( )][ ( )] : :t t n nd n d m C Cρ ∂ + ∂ + = ∂ ⋅ ∇ +∇ ⋅ ∂2u n u n u      (38) 

and 

      ( )2 || ||
3 4[ ( )] :t d m Cρ ρ ρ∂ + =∇ ⋅ ∇ + +3u u p p           (39) 

with the auxiliary variables defined as follows: 

 ( ) ( )ˆ ˆ[ ( )] :t n

d n
d n C

n
ρ

∂
∂ + = − ⋅ ∂

∂1p n n u ,  (40) 

( ) ( )/ˆ ˆ[ ( )] : n m
t n

d m
d m C p

m
ρ

∂
∂ + = − ⋅ ∂

∂2p n n u , (41) 

 ( ) ( )|| /ˆ[ ( )] : m n
t

d n
d n C p

n
ρ

∂
∂ + = − ⋅ ∇

∂3p m u  (42) 

and 

( ) ( )||ˆ[ ( )] :t

d m
d m C

m
ρ

∂
∂ + = − ⋅ ∇

∂4p m u .           (43) 

 
It should be noted that the auxiliary variables only need to be stored in 

the PML domain and they remain zero in the interior physical domain. In 
order to implement the M-PML system in the FEM, the weak formulation of 
the M-PML is desired. The weak form of eq. (1) can be obtained by 
applying a dot-product with a test vector w, and then integrating by parts 
over the domain Ω : 

 

 ( ) ( )2 : : d dt Cρ
Ω Ω

⋅∂ Ω = − ∇ ∇ Ω∫ ∫w u w u
 ,         (44) 

 
where the free surface boundary condition is taken into consideration, so 
that we neglect the boundary integral term in eq. (44). Similarly, the weak 
form of the second-order M-PML formulation can be written as: 
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( ) ( ) ( )2

1 2

ˆ ˆ ˆ ˆ[ ( )] d : : d : : d

d d

t n n nd n C Cρ

ρ ρ

Ω Γ Ω

Ω Ω

∂ + ⋅ Ω = ∂ Γ− ∂ ∂ Ω

+ ⋅ Ω+ ⋅ Ω

∫ ∫ ∫
∫ ∫

1u w nw n u n w n u

p w p w   
,    (45) 

( ) ( ) ( )
( ) ( )

|| ||

||

ˆ ˆ[ ( )][ ( )] d = : : d : : d

ˆ: : d

t t n

n

d n d m C C

C

ρ
Ω Γ Ω

Ω

∂ + ∂ + ⋅ Ω ∇ Γ− ∂ ∇ Ω

− ∇ ∂ Ω

∫ ∫ ∫
∫

2u w nw u n w u

w n u
,  (46) 

( ) ( ) ( )2 || || ||

3 4

ˆ[ ( )] d : : d : : d

d d

t d m C Cρ

ρ ρ

Ω Γ Ω

Ω Ω

∂ + ⋅ Ω = ∇ Γ− ∇ ∇ Ω

+ ⋅ Ω+ ⋅ Ω

∫ ∫ ∫
∫ ∫

3u w mw u w u

p w p w    
,     (47) 

( ) ( )ˆ ˆ[ ( )] d : : dt n

d n
d n C

n
ρ

Ω Ω

∂
∂ + ⋅ Ω = − ∂ Ω

∂∫ ∫1p w nw n u
  

,          (48) 

( ) ( )/ˆ ˆ[ ( )] d : : dn m
t n

d m
d m C p

m
ρ

Ω Ω

∂
∂ + ⋅ Ω = − ∂ Ω

∂∫ ∫2p w nw n u
  

,    (49) 

( ) ( )|| /ˆ[ ( )] d : : dm n
t

d n
d n C p

n
ρ

Ω Ω

∂
∂ + ⋅ Ω = − ∇ Ω

∂∫ ∫3p w mw u   ,  (50) 

and 

( ) ( )||ˆ[ ( )] d : : dt

d m
d m C

m
ρ

Ω Ω

∂
∂ + ⋅ Ω = − ∇ Ω

∂∫ ∫4p w mw u
  

,  (51) 

 
where Γ  denotes the exterior boundary of the M-PML that is not in contact 
with the regular domain. To find the FEM solution, the weak form of eqs. 
(44)-(51) are required to be converted into discretizing matrix equations. 
Considering the 2D case, we have displacement and auxiliary variables 
expressed as (u ,u )Tx z=u and (p ,p )Tx z=p , respectively: 
  

 1 2 3u u u ux x x x= + +       ,                  (52) 

 1 2 3u u u uz z z z= + +       ,                  (53) 

                   1 2 3 4p p p p px x x x x= + + +     ,                  (54) 

and         .      (55)  
      
       1 2 3 4p p p p pz z z z z= + + +    .        (55) 
 
 
Accordingly, the finite element forms of eqs. (45)-(51) can be expressed as 
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M!!u x1 + 2Cx !u x1 =Mpx1 +Mpx 2 −Kx1u x −Cxxu x1
M!!u x 2 + 2(Cx +Cz ) !u x 2 = −Kx2u z −Cxzu x 2
M!!u x 3 + 2Cz !u x 3 =Mpx 3 +Mpx 4 −Kx3u x −Czzu x 3
M!px1 +Cxpx1 = −Kx4u x
M!px 2 +Czpx 2 = −Kx5u z
M!px 3 +Cxpx 3 = −Kx6u z
M!px 4 +Czpx 4 = −Kx7u x

⎧

⎨

⎪
⎪
⎪
⎪⎪

⎩

⎪
⎪
⎪
⎪
⎪

,  (56)  

and 

 

M!!u z1 + 2Cx !u z1 =Mpz1 +Mpz 2 −Kz1u z −Cxxu z1
M!!u z 2 + 2(Cx +Cz ) !u z 2 = −Kz2u x −Cxzu z 2
M!!u z 3 + 2Cz !u z 3 =Mpz 3 +Mpz 4 −Kz3u z −Czzu z 3
M!pz1 +Cxpz1 = −Kz4u z
M!pz 2 +Czpz 2 = −Kz5u x
M!pz 3 +Cxpz 3 = −Kz6u x
M!pz 4 +Czpz 4 = −Kz7u z

⎧

⎨

⎪
⎪
⎪
⎪⎪

⎩

⎪
⎪
⎪
⎪
⎪

.  (57)  

 
 The final FEM solution of second-order M-PML formulation can then 
be extended to the following general form: 
 
 M!!u+C !u+Ku = f ,  (58) 
and 
 M !p+Cp+Ku = 0 ,  (59) 
 
where M , K  and C  represent the mass matrix, stiffness matrix, 
dampingmatrix, respectively; f represents right hand load vector; !u  and 
!!u  denote the first and second order derivatives of displacement with 
respect to time, respectively. The detailed formulations of M, C and K  
matrices in eqs. (56) and (57) can be found in Appendix A. For eq. (56) 
written in the matrix notation, the Newmark scheme (Newmark, 1959; Kane 
et al., 1999; West et al., 2000; Krysl et al., 2005) is used for temporal 
discretization, which is expressed as: 

 ut+Δt = ut +Δt !ut +Δt 2 1
2
−β

⎛

⎝
⎜

⎞

⎠
⎟!!u+β!!ut+Δt

⎡

⎣
⎢

⎤

⎦
⎥  (60) 
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and 

             !ut+Δt = !ut +Δt (1−γ )!!u+γ !!ut+Δt⎡
⎣

⎤
⎦   . (61) 

 Eq. (57) as the first-order ordinary differential equation is discretized 
with the Runge-Kutta method with respect to time. The resulting M-PML 
system is then solved by the so-called lumped mass technique explicitly to 
avoid solving the large sparse linear system (Richter, 1994; Meng et al., 
2017). To investigate the efficiency of the proposed M-PML algorithm, the 
total energy in the computational domain is calculated at each time step with 
the following equation: 

 E = 1
2
!uTM !u+ 1

2
uTKu

  
.  (62) 

 
NUMERICAL TEST 

 
In this section, we carry out three numerical experiments using the 

FEM to investigate the stability and efficiency of the proposed second-order 
M-PML system. 

  
  First, we demonstrate the stability of the M-PML algorithm. A 
particular orthotropic anisotropic medium Zinc is studied, which has been 
reported to cause numerical instability for the classical PML by Komatitsch 
and Martin (2007). In the second case, we carry out seismic numerical 
modeling in a vertical transversely isotropic (VTI) medium with the 
topography free surface to study the absorbing efficiency of the M-PML, 
especially for the absorption of strong Rayleigh waves. To illustrate the 
flexibility of the FEM in dealing with the rugged surface and complex 
subsurface structures, we adopt a two-layer VTI model with an irregular 
topography as the third experiment. For all three numerical examples, we 
choose a quadratic damping profile (Collino and Tsogka, 2001): 

23 1( ) log( )( )
2

xd x
R

α
δ δ

= , 

where δ  and x represent the thickness and the horizontal distance from the 
calculating point to the inner boundary of the M-PML region, respectively. 
R  denotes the theoretical reflection coefficient after discretization, which is 
selected to be 410−  for all experiments (Zhao and Shi, 2013). ( )d z  holds 
the similar expression as that of d(x). Furthermore, we use a vertical point 
source in all numerical tests, and the source is given by a Ricker wavelet 
with the following expression: 

2 2 2 2 2 2
0 0 0 0( ) [1 2 ( ) ]exp[ ( ) ]R t f t t f t tπ π= − − − −   , 

 
where 0f  and 0t  stand for the dominant frequency and time delay of the 
source, respectively. 
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Case 1: Stability study 

 
To investigate the stability of the proposed M-PML algorithm, the first 

numerical simulation is carried out in an anisotropic medium Zinc using the 
FEM, which is reported to cause numerical overflow for the classical PML. 
The elastic parameters for the Zinc medium are listed in Table 1. The model 
is meshed into 400×400 structured quadrilateral elements with the edge 
length of 5 m. All four boundaries are all set to be absorbing boundary with 
20 elements in both the x- and z-directions in the M-PML region. A vertical 
vector source is set up at (105 m, 105 m) near the inner boundary of the 
M-PML domain, with the source time function being a 15 Hz Ricker 
wavelet. The time interval is 0.5 ms with 6000 time steps in total. 

 

Table 1. Elastic parameters used in numerical models. 

 

Material properties Case1a Case2b Case3 
   Upper layerc  Lower layera 
Mass density ρ (kg/ 
m3) 

7100 2420 3050 7100 

c 11 (N/m3) 1.65×1011 16.93×109 27.40×109 1.65×1011 
c13 (N/m3) 5.00×1010 14.68×109 10.53×109 5.00×1010 
c33 (N/m3) 6.20×1010 27.60×109 50.13×109 6.20×1010 
c44 (N/m3) 3.96×1010 5.37×109 5.48×109 3.96×1010 

  a VTI media Zinc, Meza-Fajardo and Papageogiou (2008).  
        b VTI media Shale, Thomsen (1986). 
        c VTI media Biotite, Thomsen (1986). 

 
 
We compare the wavefield snapshots respectively obtained using the 

conventional PML and M-PML in terms of the vertical (Fig. 1) and 
horizontal (Fig. 2) displacement components at 0.30 s, 0.60 s, 1.20 s and 
3.00 s. It is obvious that the wavefield simulation with the conventional 
PML suffers from instability issues due to grazing incidences, while the 
simulation with the proposed M-PML shows efficient absorption and 
remains stable during the whole simulation. The floating-point overflow in 
the simulation with the conventional PML occurs after around 1.0 s, so there 
is no snapshot for 3.00 s. The wavefield energy decay (log scale) in Fig. 3 
suggests that the M-PML is stable for the wavefield simulation in the Zinc 
medium, where the simulation with conventional PML becomes unstable 
after around 0.1 s. The modeling results also show that the M-PML is 
successfully incorporated in the time-domain finite-element anisotropic 
elastic wavefield simulation. 
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Fig. 1. The comparison of the FEM simulation results with the conventional PML (left 
panel) and M-PML (right panel) in terms of the vertical component of displacement at 
0.30 s (a), 0.60 s (b), 1.20 s (c) and 3.00 s (d). The simulation with the conventional PML 
overflows after around 1.0 s, so there is no snapshot for time at 3.00 s. The solid lines 
represent PML/M-PML boundaries. 
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Fig. 2. The comparison of the FEM simulation results with the conventional PML (left 
panel) and M-PML (right panel) in terms of the horizontal component of displacement at 
0.30 s (a), 0.60 s (b), 1.20 s (c) and 3.00 s (d). The simulation with the conventional PML 
overflows after around 1.0 s, so there is no snapshot for time at 3.00 s. The solid lines 
represent PML/M-PML boundaries. 
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Fig. 3. The normalized wavefield energy decay (log scale) in the computational domain 
in case 1. The dashed line and solid line represent the energy decays of the simulations 
with the conventional PML and the proposed M-PML, respectively. 

 
  

Case 2: Simple anisotropic model with surface topography 
 
The numerical simulation to investigate the M-PML absorption 

performance of the body and surface waves is carried out using a 
homogenous, VTI medium (Table 1). The model is illustrated in Fig. 4(a) 
with the highest elevation of 100 m. The model is discretized into 187785 
unstructured triangular elements with the average edge size of 5 m. Fig. 4(b) 
illustrates how we divide the computational model into unstructured 
triangular elements with much larger elements. The M-PML region includes 
20 elements in both the x- and z-directions, while the free surface boundary 
condition is applied on the topographic surface. A vertical Ricker point 
source with the dominant frequency of 10.0 Hz is set up at (1000 m, 100 m), 
as indicated by a plus sign in Fig. 4(a). Two receivers are located at (200 m, 
0 m) and (1800 m, 0 m) on the free surface, as illustrated in Fig. 4(a) with 
two inverted triangles. The time interval is set as 0.5 ms and the total 
iteration takes 4000 steps.  

 
 
Fig. 4. (a) The model sketch used in case 2. The plus sign indicates the vertical force 
source and two invert triangles indicate receivers; (b) unstructured triangular mesh 
scheme with much larger elements size for illustration purpose. 
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Fig. 5 shows the snapshots of both the vertical (left panel) and 
horizontal (right panel) components of displacement at 0.30 s (a), 0.75 s (b), 
1.10 s (c) and 2.00 s (d), respectively. In the snapshot at 0.30 s [Fig. 5 (a)], 
the head wave, S-wave and P-wave can be identified clearly, while the 
surface wave is not well separated from S-wave due to the short propagation 
distance. In Fig. 5(b), we can observe that the P-wave has propagated out of 
the computational domain and absorbed by the M-PML domain, and the 
Rayleigh wave can be clearly identified as indicated by R. In Fig. 5(c), the 
strong Rayleigh wave has been absorbed efficiently, with only S-wave left 
in the computational domain. In Fig. 5(d), we can see that all types of 
seismic phases have been absorbed efficiently, without obvious artificial 
reflections from the truncated boundaries. 

  

   

   

   

   
 
Fig 5. The snapshots with the M-PML in case 2. The left and right panels show the 
vertical and horizontal components of displacement at 0.30 s (a), 0.75 s (b), 1.10 s (c), 
and 2.00 s (d), respectively. The solid lines represent M-PML boundaries. P, S, R, and H 
represent compressional wave, shear wave, Rayleigh wave, and head wave, respectively. 
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Figs. 6(a) and 6(b) show the seismograms of the vertical and horizontal 
components of displacement at the receiver (200 m, 0 m) and Figs. 6(c) and 
6(d) show the seismograms of the vertical and horizontal components of 
displacement at the receiver (1800 m, 0 m), respectively. Both body wave 
and surface wave can be well identified in these seismograms. Fig. 7 shows 
the wavefield energy decay curves using the proposed M-PML against the 
convectional PML. The simulation with the PML becomes unstable after 
around 1.0 s, while the simulation with the proposed M-PML remains stable 
and efficient. In addition, the seismic profiles obtained at surface are given 
in Fig. 8, from which it can be concluded that both body and surface waves 
have been efficiently absorbed. 

 

 

 

 

 
 
Fig. 6. The normalized seismograms with the M-PML at two receivers. Panels (a) and (b) 
are the vertical and horizontal components of displacement at point (200 m, 0 m), and 
panels (c) and (d) are the vertical and horizontal components of displacement at point 
(1800 m, 0 m), respectively. 
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Fig. 7. The normalized wavefield energy decay (log scale) in the computational domain 
in case 2. The dashed line and solid line represent the energy decays of the simulations 
with the conventional PML and the proposed M-PML, respectively.  

 

   
Fig. 8. The seismic profiles of the vertical (a) and horizontal (b) components of 
displacement. P and R represent compressional wave and Rayleigh wave, respectively.  
 
 
Case 3: Two-layer anisotropic model with an irregular topography 

 
A two-layer anisotropic elastic model with an irregular surface is tested 

to show the merit of the finite-element method in handling complex surface. 
The elastic parameters used in this study are listed in Table 1. The geometry 
of the model is shown in Fig. 9(a), which is meshed into 208636 
unstructured triangular elements. Fig. 9(b) illustrates the mesh scheme with 
much larger elements. The Ricker source (plus sign) with the dominant 
frequency of 8 Hz is set up at (2000 m, 0 m) in Fig. 9(a). The time step is 
also set to be 0.5 ms and the number of total iteration steps is 8000. The free 
surface boundary condition is applied on the topographic surface of the 
model where a series of receivers are placed as shown with inverted 
triangles [Fig. 9(a)]. The M-PML absorption profiles are set in all other 
three boundaries, including 20 elements in both the x- and z-directions. 
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Fig 9. (a) The model geometry used in case 3. The plus sign indicates the vertical force 
source and the invert triangles indicate receivers; (b) unstructured triangular mesh 
scheme with much larger elements size for illustration purpose. 
 

 
 

   

   

   
 

Fig 10. The snapshots with the M-PML in case 3. The left and right panels show the 
vertical and horizontal components of displacement at 0.40 s (a), 0.60 s (b), and 1.20 s (c). 
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The snapshots of vertical (left panel) and horizontal (right panel) 
components of displacement at (a) 0.40 s, (b) 0.60 s and (c) 1.20 s are 
shown in Fig. 10, respectively. In Fig. 10(a), we can observe typical S-wave 
splitting which generates a fast and a slow shear wave front. Fig. 10(b) 
shows the reflections from the discontinuous interface results in a quite 
complex seismic wavefield in which different kinds of wave phases are 
difficult to distinguish. In Fig. 10(c), most of the direct P-waves propagate 
out of the computational domain and the wavefield remains complicated due 
to the topographic surface and the discontinuous interface. Fig. 11 shows the 
synthetic seismic profiles of the vertical (left) and horizontal (right) 
components of the displacement recorded at the free surface, which indicate 
the complexity of seismic phases due to the effects of the surface 
topography and geological structure. The wavefield energy decaying in 
logarithmic scale is shown in Fig. 12 for a total simulation duration of 4.0 s.  
 

  
Fig. 11. The seismic profiles of the vertical (a) and horizontal (b) components of 
displacement in case 3. 
 

  
 
Fig. 12. The normalized wavefield energy decay (log scale) in the computational domain 
in case 3. The dashed line and solid line represent the energy decays of the simulations 
with the conventional PML and the proposed M-PML, respectively. 
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We can observe that the energy gradually reduces since seismic 
waves reach the M-PML boundaries, while the simulation with the 
convectional PML fails after around 1.5 s. The simulation results in this 
case indicate our time-domain finite-element anisotropic elastic wavefield 
simulation is successfully implemented in the model with the complex 
subsurface structure and surface topography. 
 
 
COMPUTATIONAL COST AND MEMORY CONSUMPTION 

 
The computational cost and memory occupation for all three cases in 

the previous section are summarized in Table 2. Our finite-element code is 
written in native C language and OpenMP is adopted as the parallel 
computing scheme to accelerate the matrix calculation. All the simulations 
in numerical tests are performed with Xeon(R) 2.50 GHz CPU with 24 
threads. In order to reduce the memory requirement, we use CSR sparse 
matrix scheme to store the large-sparse matrices in the FEM. In the 
comparisons of the proposed M-PML and M-PML-S (SEM in Ping et al. 
(2014)), we can see that our proposed M-PML saves computational time. In 
case 1, the CPU time of the simulation with our proposed M-PML takes 
about 263 s and is 34.57% faster than the scheme using M-PML-S.  

 

Table 2. Computational cost and memory consumption. 

Cases Total time steps CPU time 

(s) 

Computer                       
memory  
consumption   
(MB) 

Case1 
M-PML 

6000 
263.04 59.50 

M-PML-S 402.02 66.15 

Case2 
M-PML 

4000 
85.16 26.63 

M-PML-S 132.22 30.80 

Case3 
M-PML 

8000 
224.93 32.16 

M-PML-S 348.44 36.69 
 
 
The CPU times of other two simulations also indicate our proposed 

M-PML is more efficient than M-PML-S, with 35.59% and 35.45% 
improvements in efficiency. At the same time, the proposed M-PML also 
consumes less memory than the M-PML-S (10.05%, 13.54% and 12.35% 
less for three cases, respectively). The reason is that we only split each 
wavefield into three terms as indicated in eq. (33), while M-PML-S requires 
five split terms in the computation domain and seven in the PML domain. 
Overall, numerical tests indicate that our proposed M-PML method is 
computationally efficient and requires less memory than the M-PML-S.  
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DISCUSSION 
 
In this study, we derive the weak form of the 2D elastic wave equation 

with the proposed M-PML for the FEM simulation. In the 3D case, the 
derivation follows a very similar procedure as done in the 2D case, although 
it is more complicated due to the introduction of the third direction. We can 
expect three changes as follows. First, the damping profile in the third 
direction needs to be included to suppress the artificial reflections along that 
direction. Second, the gradient operator needs to be split into three 
directions so that the 3D elastic wave equation with the M-PML can be 
derived. Last, for numerically solving the elastic wave equation with FEM, 
the tetrahedral or hexahedral element should be used to divide the 
computation domain, on which the corresponding shape function is defined. 
Since the proposed M-PML requires less memory usage and computational 
time due to less split displacement terms, the efficiency improvement for 3D 
seismic wavefield simulation is more pronounced. 

 
We investigate the effectiveness of the proposed M-PML for wavefield 

simulations in the anisotropic solid medium. For the marine environment, 
however, the seismic wave simulation should be solved using the coupled 
acoustic-elastic wave equation. In the fluid-solid medium, the additional 
quantities need to be calculated along the fluid-solid interface to satisfy the 
boundary condition, i.e., the continuity of the normal component of traction 
(Afanasiev et al., 2019). The implementation of the continuous boundary 
condition between the fluid and solid interface only influences the boundary 
integral terms in the weak forms of the acoustic and elastic wave equations, 
while other terms remain unchanged. For more details, one can refer to 
Komatitsch et al. (2000) and Nissen-Meyer et al. (2007). 

 
In the finite-difference method, the acoustic or elastic wave equations 

can be solved either in the first-order system or the second-order system. 
For FEM, however, the weak form of the wave equation relies on its 
second-order form so that the M-PML formula originally proposed in the 
velocity-stress form cannot be directly used. Moreover, the numerical 
accuracy of FEM is related to the order of the basis function defined on each 
element. In our examples, the models are divided by the triangular or 
quadrilateral elements with three or four nodes defined at each vertex, 
where the linear basis function is defined. To further improve the accuracy 
of the wavefield modeling, the quadratic basis function can be used by 
defining additional control nodes at the midpoint of each side of the element. 
However, the doubled number of nodes would require more computational 
resources, even though the same number of elements is used. 

 
 

CONCLUSION 
 
We develop a new M-PML boundary condition for the second-order 

wave equation for the finite-element anisotropic elastic wavefield 
simulation. We first derive the M-PML formulation and then incorporate the 
M-PML into the second-order wave formulation in the time domain with 
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fewer split terms to reduce memory requirement and consequentially 
improve the computational efficiency. Three numerical wavefield 
simulations are carried out to demonstrate the stability and efficiency of the 
proposed M-PML. The proposed algorithm can also be extended to 3D 
anisotropic elastic simulation of wave propagation with reasonable efforts.   
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APPENDIX 
  

 The formulations of the M , C  and K  in eqs. (43) and (44): 
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where ρ , 11c , 13c , 33c  and 44c  stand for the elastic parameters; [ ]φ  

denotes the basis function, and [ ]xφ , [ ]zφ  denote derivations of the basis 

function with respect to x and z, respectively; the superscript T  represents 

the transpose operator of a matrix; xd  and zd  represent the damping 

coefficients; '
xd  and '

zd  denote derivations of xd  and zd  with respect to 

x and z, respectively; /x zp  and /z xp  are the constants for fine-tuning of the 

stability of the M-PML region; 
1

N

e=
∑ denotes the summation of all surface 

elements; and 
eΩ
∫ denotes the integration over each element. 


