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ABSTRACT

Alizadeh, S., Poormirzaee, R., Nikrouz, R. and Sarmady, S., 2021. Using stacked
generalization ensemble method to estimate shear wave velocity based on downhole

seismic data: a case study of Sarab-e-Zahab, Iran. Journal of Seismic Exploration, 30:
281-301.

The proper estimation of shear wave velocity (Vs), because of its direct relation to
the soil dynamic properties, for the study of Site effects is an important task in the
engineering geophysics. Because of the direct travel of waves from sources to receivers,
the downhole seismic method, among others, is suitable for accurate estimation of shear
wave velocity. However, the main challenge is the high cost of borehole surveys, which
limits the amount of downhole seismic data when studying a large area. In order to tackle
this problem, an ensemble system is proposed that estimates the shear wave velocity
using a limited amount of data. For this purpose, the downhole seismic data at 4 points
were collected in Sarab-e-Zahab area, Iran. Then, the data were processed and the shear
wave velocity profile was obtained for each borehole. Finally, using an ensemble of
neural networks, a 3- and 2-dimensional model of Vs was constructed for the study area.
Feed-forward neural networks were used as the base classifiers in an ensemble system
and two methods, namely averaging and stacked generalization were employed to
combine the results of base classifiers. The performances of the two methods were
compared and the shear wave velocity was estimated as a function of depth. The results
of the ensemble neural networks method in the study area were compared with Kriging
geostatistical method. The results show the ensemble neural networks in the Vs modeling
in comparison to the Kriging method has better performance. Also, the findings showed
that the stacked generalization method outperformed the averaging method in the
estimation of shear wave velocity.
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INTRODUCTION

Earthquake is a natural phenomenon that occasionally shakes part of
the earth, causing devastation, injury and death. Seismic microzonation is
the first step to mitigate the devastating effects of earthquakes. In the seismic
microzonation, the study area is classified according to the degree of
importance and also the extent of the potential earthquake vulnerability of
the area to varying degrees of risk. The results can be used for urban
planning, disaster preparedness and risk reduction (Ansal et al., 2010). The
observations of different earthquakes indicate that the earthquake damage in
sedimentary basins is much greater than that in the areas located on the
bedrock (Zaharia et al., 2008). The studies of seismic microzonation and site
reaction include several steps and one of the most important and
fundamental steps is to investigate the characteristics of subsurface layers in
the study area. The subsurface layers of the area are explored using the
geotechnical and geophysical studies. The commonly studied properties are:
soil layering, average shear wave velocity, bedrock location, maximum
shear modulus, layer thickness, main period of soil profiles, etc. ISSMGE,
1993). In the geotechnical experiments, after the borehole drilling and
sampling, the experiments are usually performed in the laboratory, since the
results of these tests are limited to the area around the borehole, and since
the soil is heterogeneous and anisotropic, the results of the experiments
cannot be generalized to the whole area under investigation. Also, when
complex geological conditions exist, the use of geophysical methods could
increase the quality of borehole data (Earley and Rudenako, 1988). The
studies of seismic microzonation and site reaction require the identification
of subsurface soil properties at the site. The knowledge of shear wave
velocity is a key parameter for evaluating the dynamic behavior of soil in
the shallow subsurface (Kanli et al., 2006). Information about the shear
wave velocity in depths is needed to predict the ground response to
earthquakes (Hunter et al., 2002). Burcherdt (1994) recommended an
average shear wave velocity of 30 m (Vg3p) for the soil classification and
seismic design. The geophysical seismic methods are based on the fact that
the wave propagation velocity in an elastic object is a function of the elastic
modulus and material density (Hvorslev, 1949). The downhole seismic
method is one of the most accurate geophysical techniques to investigate the
characteristics of subsurface layers in the study area and also the site effects
or seismic microzonation. Despite the usefulness of the downhole method in
examining the characteristics of subsurface layers, if it is being used for
exploring the characteristics of regional subsurface layers in a large area, a
large number of downhole boreholes are required. This is sometimes not
practical due to the costs. This study attempts to use a neural network model
to predict the shear wave velocity in areas where it is not possible to drill
boreholes. In order to increase the accuracy and performance of the neural
network model, an ensemble of neural networks is used. Combining multiple
networks and creating an ensemble neural network can reduce the risk of
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incorrect results and potentially improve the accuracy and generalization
capability. One of the earliest ensemble systems was created by Dasarathy
and Sheela (1979). They partitioned the attribute space to two or more
classifiers. Hansen and Salamon (1990) showed that the performance of
neural networks can be improved using a set of neural networks with similar
configurations. There are various approaches to the integration of multiple
neural networks which all attempt to minimize the error of estimation,
including the following. Zhou et al. (2002) used genetic algorithm to
combine the results of multiple neural networks using the GASEN method.
Wolpert (1992) proposed a stacked generalization method for combining the
base classifiers. Several studies have utilized the artificial neural networks
(ANN) in geophysics, some of which are briefly listed here. Shimshoni and
Intrator (1998) used artificial neural networks to differentiate natural
earthquake waves from artificial explosion waves. Carderon et al. (2000)
estimated the thickness and velocity of seismic layers using artificial neural
networks and geoelectric data. In a study, Van der Baan and Jutten (2000)
examined the use of neural networks for approximating geophysical
problems. Liu et al. (2004) used the radial basis function (RBF) neural
networks as base networks and combined their results with majority voting
technique to predict earthquakes. The results of this study showed that the
use of ensemble neural networks increases the earthquake prediction
accuracy. Abdideh (2012) estimated the permeability in an oil field in Iran
using artificial neural networks. Polo et al. (2017) introduced a new
approach based on deep neural network (DNN) on seismic images to detect
faults. Nyein and Hamada (2018) applied ANN in the prediction of water
saturation and porosity of shaly sandstone reservoirs using well logging data.
In current study, we introduce a new method using machine learning
techniques, i.e., ensemble systems, for the construction of 3- and 2-
dimensional shear wave velocity models in Sarab-e-Zahab (Iran) located in a
region with a high level of seismic hazard.

METHODS
Artificial Neural Network

Artificial neural networks are modeled on the neurons of brain. They
make inference through simple mathematical calculations. The artificial
neurons are put together in layers to form a feed-forward network. The input
weights of neurons are adjusted so that feeding the training dataset to the
network could produce the expected outputs with a good accuracy. It is then
expected that the network can calculate appropriate outputs for new unseen
inputs. Since the relation between inputs and outputs could be nonlinear,
nonlinear activation functions like sigmoid are used for hidden neurons of
the network.
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Geology of the study area

The study area, Sarab-e-Zahab, is located in the central part of the
Sarpol-e-Zahab county in Kermanshah province, Iran. The area is
geologically located on the zone of Ghasr-e-Shirin and conforms to the
characteristics of this zone. The study area is shown in Fig. 1. This area has
a high level of estimated hazard. The last powerful earthquake (7.3 Mw) in
the study area happened on November 12, 2017 at 18:18 pm (World Time)
about 37 km northwest of Sarpol-e-Zahab. In this earthquake, the study area
was entirely destroyed. Besides the earthquake magnitude, the geological
formations of the area and the conditions of subsurface layers appear to play
an important role in this disaster. In terms of geological structure,
Kermanshah province consists of two structural units, namely Sanandaj-
Sirjan and Zagros structures. The Zagros Mountains are bounded on the
north by the Iranian plateau and on the south by the active basins of
Mesopotamia and the Persian Gulf. The province can also be geologically
divided into eastern and western parts. The eastern part, which is higher and
mainly mountainous, comprises a series of igneous and metamorphic rocks
(Sanandaj-Sirjan unit), calcareous and radiolarian rocks (Zagros drifting)
and calcareous dolomitic high folds (folded Zagros).

The geological formations of Ghasr-e-Shirin region during the
Neogene period include the sediments of Fars Group (Gachsaran, Mishan
and Aghajari formations). These formations generally include sandstone, red
clay, marl, dolomitic limestones and gypsum (Agha Nabati, 1995). Due to
lack of local geological map and absence of geotechnical data in the study
region, 3-dimentional distribution of subsurface soil not available. But the
observations during the drilling boreholes up to 30 m depth, for downhole
seismic test, show drilling cores consisted of soft clay, sand, clay, marl and,
to some extent, gypsum and lime. Table 1 shows the range of shear wave
velocities for the mentioned formations.

Table 1. Shear wave velocity range for some types of sediments (Mavko, 2005).

Type of formation S wave velocity
(m/s)

Dry sands 100-500

Wet sands 400-600
Clay 175-375
Marls 750-1500
Chalk 1100-1300

Limestone 2000-3300
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Data acquisition

The study area is located in Sarab-e-Zahab village, 15 km from
Sarpol-e-Zahab, Kermanshah province, Iran. The study area covers an area
of 74000 square meters. To gather downhole seismic data, four boreholes
were drilled in the study area. The downhole seismic test can directly
measure the P- and S-wave velocities in a borehole by penetrating the
seismic cone into the soil or rock. The seismic waves are generated by a
seismic source on the surface near the borehole. The downhole receivers are
located at a specific distance from the borehole to detect incoming seismic
wave. Then, the travel time of the seismic wave between the source and the
receiver is measured. The P- and S-wave velocities are determined after
measuring the travel time for the P- and S-waves produced. The position of
the study area and boreholes are shown on Google Earth map in Fig. 2. In
each of the boreholes, the downhole tests were performed using the shear
and longitudinal waves. The specifications of the boreholes are set out in
Table 2.

Fig. 2. Location of the boreholes in the study area (Google Earth imagery).

Table 2. The specification of boreholes in the study area.

No Distance | Distance | No.records | No.records | Distance | Depth long lat
Downhole metal shear SH waves SV&P beetwen (m)

plate beam waves records

(m) (m) (m)
BH1 3 3 20 20 1.5 30 34°37'20" | 45°49'35"
BH2 3 3 20 20 1.5 30 34°37'19" | 45°49'32"
BH3 3 3 20 20 1.5 30 34°37'16" | 45°49'34”
BH4 3 B 20 20 1.5 30 34°37'14" | 45°49'37"
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After gathering the data, namely travel times and shear wave
velocities, the processing was performed by Downhole 2016 software. For
this purpose, the noises are filtered and then, the first arrival times of P- and
S-waves were determined at different depths. Moreover, for calculating the
corrected arrival time, eq. (1) is used. After calculating the first arrival times
of P- and S-wave velocities, it is time to calculate the P- and S-wave
velocities for each of the boreholes:

Seismograph Hammer

.

Z
Gravel pack —§i

Geophone

Pvc Tube

Fig. 3. Schematic representation of downhole seismic method.
z
Tcor: ; t . (1)

In Fig. 3, d is the distance from the borehole center to the energy
source, z is the depth of investigation where the receiver is located, 7 is the
direct route of the source to the receiver, and T, is the corrected time. The
obtained corrected times and wave velocities for the borehole data
processing in all boreholes are presented in Table 3.
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Table 3. The obtained corrected times and wave velocities for the boreholes in the study
area.

Corrected | (S) wave | Corrected | (S) wave | Corrected | (S) wave | Corrected | (S) wave
time(S) Velocity | time(S) Velocity time(S) Velocity time(S) Velocity

wave (m/s) wave (m/s) wave (m/s) wave (m/s)

Tscor Tscor Tscor Tscor

[mse] |msec] [msec] |msec]

BH1 BH1 BH2 BH2 BH3 BH3 BH4 BH4
10.20 147.11 13.06 114.87 9.21 162.82 7.56 198.47
18.74 175.61 21.78 172.01 18.38 163.54 13.51 252.19
25.29 228.80 30.70 168.09 30.29 126.03 22.05 175.57
31.39 245.9 39.62 168.15 36.40 245.23 30.23 183.32
38.25 218.7 44.38 315.25 45.77 160.07 33.24 498.69
44.68 233.29 49.24 308.93 50.28 332.87 35.67 617.03
47.50 532.61 56.54 205.45 54.90 324.48 38.75 487.19
55.49 187.67 64.13 197.66 61.12 241.31 47.25 176.45
58.67 472.2 71.07 216.14 64.89 405.43 57.00 153.64
65.70 213.37 75.01 379.94 70.21 278.25 62.07 296.35
69.17 432.63 81.17 243.71 76.25 248.33 70.54 177.04
72.30 478.23 90.16 166.91 81.87 266.87 73.19 566.70
77.29 300.72 97.26 211.29 85.00 479.34 78.18 300.61
81.87 327.65 104.34 211.72 89.49 333.97 82.56 342.34
86.83 302.25 108.04 405.07 93.37 386.37 86.14 419.47
90.10 459.11 116.00 188.60 97.44 368.73 96.75 141.38
104.68 102.89 120.87 308.07 106.46 166.22 101.80 296.98
110.22 270.58 124.93 369.02 113.00 229.40 108.04 240.49
113.37 475.9 127.99 489.92 122.93 151.27 113.27 286.31
118.21 310.12 134.23 240.48 129.45 229.59 118.41 292.10

Estimation of Vs using ensemble neural network technigue

In order to process the data using an ensemble system, the map of the
study area was first extracted from Google Earth and then transferred to
ArcGIS software. Afterwards, the area was gridded and 19 points as
hypothetical boreholes were designated for the estimation of shear wave
velocity. Also, an origin point was considered outside the designed grid. The
arrangement of points, drilled boreholes in the study area, and origin point
are depicted in Fig. 4. The coordinates of the boreholes and 19 points were
defined as (X, Y, Z), where X and Y are the horizontal and vertical distance
from the origin point, respectively. Also, Z is the depth of the points divided
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into the 1.5 m intervals. Table 4 shows the coordinates of boreholes and
points in the study area. Then, an ensemble of neural networks and the
available downhole seismic data were used to estimate The Vs profiles for
the whole study area, namely 19 designated points. In this study, different
preprocessing methods were used prior to training the neural networks. In
order to normalize inputs of neural networks, logarithm of the basis 10 was
found to work better than other methods.
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Fig. 4. The arrangement of points, boreholes and origin in the study area.

In order to train the base neural network of the ensemble system,
which estimate the depth profile of shear wave velocity at 19 single points,
80 data items of 4 boreholes (20 data for each borehole) were prepared and
randomly arranged in quadruple form (X, Y, Z, Vs). The (X, Y, Z) are the
neural network inputs, and the output, shear wave velocity (Vs), is going to
be predicted by the networks. Furthermore, to improve the performance of
predictions, the data items were divided into two depth ranges, namely (1.5
to 15) meters and (16.5 to 30) meters. For each range of data, a separate
ensemble system was used. For each ensemble system, 10 base models (i.e.,
neural networks) were trained. Ten sets of training and test data were
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prepared using 10-fold subset selection method. For each subset, 9/10 of the
whole data items were put together to form the training data. The remaining
1/10 was used as the test data. Base networks have the same hyper-
parameters and consist of three layers. There are 7 neurons in the first
hidden layer and 3 neurons in the second hidden layer, all with sigmoid
activation functions. The network performance was evaluated using mean
square error (Table 5). After training the networks, the profiles of shear
wave velocity in each of the 19 boreholes and points were estimated using
the trained networks. Since 10 profiles (up to 30m deep) are estimated per
borehole by 10 base networks, they need to be combined to obtain the final
depth profile of shear wave velocity in boreholes and 19 points. In order to
combine the estimated results of the base neural networks, two methods,
namely simple averaging and stacked generalization, were used, and then,
the results (i.e., the estimated profiles) of the two methods were compared.

Table 4. Boreholes and points coordinates in designed grid for the study area.

X Y 7
[m] [m] [m]
136.9 281 -1.5,-3,-4.5,......-30
44.6 239.2 -1.5,-3,-4.5,......,-30
111.6 162 -1.5,-3,-4.5,......,-30
171.1 91.2 -1.5,-3,-4.5,.....,-30
115.4 79.8 -1.5,-3,-4.5,......-30
177.4 79.8 -1.5,-3,-4.5,......-30
234.4 79.8 -1.5,-3,-4.5,.....,-30
58.5 159.5 -1.5,-3,-4.5,......-30
177.4 159.5 -1.5,-3,-4.5,.....,-30
234.4 159.5 -1.5,-3,-4.5,......-30
293.9 159.5 -1.5,-3,-4.5,......-30
58.5 240.5 -1.5,-3,-4.5,......-30
115.4 240.5 -1.5,-3,-4.5,......-30
177.4 240.5 -1.5,-3,-4.5,......-30
234.4 240.5 -1.5,-3,-4.5,.....,-30
293.9 240.5 -1.5,-3,-4.5,......-30
3533 240.5 -1.5,-3,-4.5,......-30
58.5 317.7 -1.5,-3,-4.5,......-30
115.4 317.7 -1.5,-3,-4.5,.....,-30
177.4 317.7 -1.5,-3,-4.5,.....,-30
234.4 2924 -1.5,-3,-4.5,.....,-30
293.9 317.7 -1.5,-3,-4.5,.....,-30
353.3 317.7 -1.5,-3,-4.5,.....,-30
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Table 5. Performance of 10 networks with different data sets and similar network
parameters (first and second ranges of data).

MSE primary data MSE data after MSE primary data MSE data after

training training
0.0835 2.67%10"" 0.0392 9.34%10°
0.0335 3.07%10°" 0.0189 7.79%107°
0.101 4.71*%10"" 0.112 0.000177
0.520 1.22%10° 0.0366 0.00411
0.0513 0.000143 0.175 425%10°
0.283 0.000119 0.161 2.01*%10™
0.281 1.63*10"° 0.491 4.08*%10°
0.140 4.15%10"° 0.0659 1.92%107"
0.357 7.35%10"" 0.586 0.000377
0.0799 1.76*107 0311 4.44%107"

Simple Averaging

In this method, the estimation of shear wave velocity profile provided
by 10 base neural networks in 4 boreholes were combined using the
averaging. In order to evaluate the method, the correlation chart was plotted
for the estimated values and the observation data (obtained from downhole
operations). The RMSE value and regression coefficient (R) were
determined. The correlation is shown in Fig. 5
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Fig. 5. Correlation graph for estimated data (average combiner) and observation

(downhole data).
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Stacked Generalization Method

In this method, the estimates of shear wave velocity profiles in 4
boreholes provided by the base neural networks were combined using
stacked generalization method. A feed-forward neural network was used to
combine the results of the base networks. The input data of the combiner
network consists of 10 profiles of shear wave velocity in 4 boreholes and the
target data are the results of the downhole boreholes.

A three-layer network with sigmoid activation function for the hidden
layers was used for the combiner. There are 13 neurons in the first hidden
layer and 3 neurons in the second hidden layer. A correlation diagram was
prepared for the estimated data (using stacked generalization) and the
observation data (obtained from downhole operation). Furthermore, the
RMSE (root-mean-square error) and regression coefficient R were
calculated. The correlation chart is shown in Fig. 6.

The results of the averaging and stacked generalization methods are
compared in Table 6. The results show that the RMSE of stacked
generalization method is lower than the averaging method, while the
regression coefficient (R) is higher and better. In other words, the estimated
results for the depth profile of shear wave velocity in 4 boreholes are much
better in the stacked generalization method.
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Fig. 6. Correlation graph for estimated data (stacked generalization combiner) and
observation (downhole data).
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Table 6. The results of averaging and stacked generalization methods.

RMSE R RMSE
R

46.13067 0.8405 81.09671 0.5912

Soil classification in the study area

The earth layers are divided according to the shear wave velocity. In
accordance with Eurocode 8 (Eurocode 8 , 2005), the average shear wave
velocity in the upper 30 m is calculated using eq. (2), where di is the layer
thickness, V; is the shear wave velocity of layers, and n denotes the number
of layers. In the study area, after estimating the shear wave velocity in 4
drilled boreholes and designated points, the average shear wave velocity of
the study area was calculated. Results show the average shear wave
velocities in top 30 m from surface, i.e., Vs;, in the study area varies
between 187 m/s to 260 m/s. According to Eurocode 8 (Table 7) the study
area is classified as category C.

30
Vg3 =

s @
=1V

2 and 3-dimensional modeling of shear wave velocity in the study area

After estimating the depth of shear wave velocity (Vs), the two-
dimensional maps containing the horizontal cross-sections at 10, 20 and 30m
depths are plotted in Fig. 7(a, b, ¢). Also, Fig. 8 shows the Vg3 in the study
area. A 3-dimensional (3D) map of the shear wave velocity in the study area
is also plotted in Fig. 9 (a, b).
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Table 7. Soil classification according to Eurocode 8 (Eurocode 8., 2005).

Rock or other rock-like geological
formation, including at most 5 m of weaker
material at the surface.

Deposits of very dense sand, gravel, or very
stiff clay, at least several tens of meters in
thickness, characterized by a gradual
increase of mechanical properties with
depth.

360-800

>50

>250

Deep deposits of dense or medium-dense
sand, gravel or stiff clay with thicknesses
from several tens to many hundreds of
metres

180-360

15-50

70-250

Deposits of loose-to-medium cohesionless
soil (with or without some soft cohesive
layers), or of predominantly soft-to-firm

cohesive soil.

<180

<15

<70

A soil profile consisting of a surface
alluvium layer with vs values of type C or D
and thickness varying between about 5 m
and 20 m, underlain by stiffer material with
vs > 800 m/s.

S1

Deposits consisting of, or containing, a layer
at least 10 m thick, of soft clays/silts with a
high plasticity index (PI > 40) and a high
water content.

<100

10-20

S2

Deposits of liquefiable soils, of sensitive
clays, or any other soil profile not included
in types A—E or S1.
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Fig. 7. The horizontal Cross section map of the study area at depth, (a): 10 m, (b): 20 m
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Comparison of stacked generalization and Kriging geostatistical
methods in Vs30 modelling

To explore the capability of the proposed method, i.e., stacked
generalization method, the obtained results in the study area (Fig. 10) were
compared with the Kriging geostatistical method. To this aim, the Kriging
tool available on the GIS software package was used to estimate the S-wave
velocities in target points (Fig. 11). However, the availability of a sufficient
number of samples and proper spatial distribution of them to interpolate of
variable values in the target points are the significant issues in the
application of geostatistical methods. Based on the spread of target points
and down holes locations, there is a poor horizontal data distribution. This
issue impact Kriging and fails the results to converge a realistic estimation
of Vs. In this situation, the use of neural networks because of its ability in
the mapping complicated relationships is an appropriate choice, even in
circumstances that there are few known data points. Based on geological
information of the study area, estimation of Vs by the stacked generalization
method has better performance than the Kriging geostatistical method.
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Fig. 10. Estimated V3 in the study area by the stacked generalization method.
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Fig. 11. Estimated Vg3 in the study area by the Kriging geostatistical method.

CONCLUSIONS

The results show the success of the ensemble system in estimation of
shear wave velocity in the study area. The ensemble system can be used to
estimate the shear wave velocity, especially when there are few data items or
when the data is very complex. The ensemble neural network method
consists of two main components: (1) base neural networks, and (2)
combiner, which combines the results of the base models. The results of the
base neural networks are combined in two different ways, namely averaging
and stacked generalization. Stacked generalization produced lower error and
improved accuracy for the estimations.

Based on the results obtained for the shear wave velocity in the
downhole boreholes and the results estimated by the ensemble system
elsewhere in the region, we conclude that the approximate variations of the
depth profile of shear wave velocity until the 30 m depth in the region range
from 100 m/s to 800 m/s. As shown in Fig. 8, Vs;¢ ranges from 187 m/s to
260 m/s. To probe the efficiency of the proposed method, the obtained
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results in the study area were compared with the Kriging geostatistical
method. The results show the ensemble neural networks in Vs modeling in
comparison to the Kriging method has better performance, especially in
circumstances that there are few datasets. In accordance with Eurocode 8,
we conclude that the soil type is category C, which mainly comprises deep
deposits of dense or medium-dense sand, gravel or stiff clay with
thicknesses from several tens to many hundreds of meters. According to the
geological data of the study area, the subsurface layers are mostly sand, clay
and marl with approximate range of shear wave velocity from 100 m/s to
1500 m/s and possibly lime and gypsum with shear wave velocity range of
1100 m/s to 3300 m/s. Comparing the results of the depth profile of shear
wave velocity in the region and the Vg3 zoning in the region and its
compliance with the geological information of the region, we conclude that
the results of this study have a good agreement with the geological data of
the area, and the probability of presence of gypsum and lime in this area is
very low. Also, the results of this study confirm the high damage caused by
the earthquake, because one of the major damages caused by the earthquake
is the classification of the soil type at the site, as the lower the density of
sediments, the more the earthquake destruction.
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