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ABSTRACT

Dai, R.-H., Zhang, Y.-P., Zhang, F.-C. and Yin, C., 2121. Self-adaptive edge-preserving
smoothing and its applications in seismic impedance interpretation. Journal of Seismic
Exploration, 30: 303-318.

Seismic attributes, such as seismic impedance, AVO or AVA attributes, or other
amplitude-like attributes, and so forth, increase the geological information interpretation
ability of seismic data. However, in practical case, the calculation of seismic attributes is
based on the mathematical formula, such as derivative or integration of seismic data. So,
it also enhances random noise. Edge-preserving smoothing (EPS) method can suppress
random noise along reflectors while preserving major stratigraphic or structural
discontinuities features. These features are very important for seismic data’s geological
interpretaion. However, the conventional EPS filter use fixed filter window size to
perform in practice. Hence, the little geological features (e.g., channels, minor fault or
thin layers) will be suppressed if their width are smaller than used filter window size. On
the other hand, if the filter window size is too small, noise will not be removed
sufficiently. In order to overcome this issue, we present a new EPS filter which uses a
series of different window size and self-adaptively chooses the best one through filter
window size scanning. The self-adpative EPS filter can strike a balance between noise
remove and useful geological information protection. Applications on model tests and
real data examples have shown the effectivity of the proposed method.

KEY WORDS: self-adaptive edge-preserving smoothing, impedance interpretation,
filter window size scanning, seismic attributes.
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INTRODUCTION

Geophysicists and geologists use the lineaments with meaningful
geological features in seismic data cubes to predict oil or gas reservoirs.
These seismic data cubes include seismic impedance (AlBinHassan et al.,
2006; Zhang et al., 2014, 2015a; Dai et al., 2016), amplitude gradients (Luo
et al., 2002), volumetric curvatures (Al-Dossary and Marfurt, 2006, Wang et
al., 2012), AVO or AVA attribute (Dai et al., 2014a, 2014b, 2015; Zhang et
al., 2015b; Zhang and Dai, 2016), and so forth. They are also called seismic
attributes, which are related to the reservoir rock physics characteristics (Ba
et al., 2017, 2018; Pang et al., 2019). Hence, it is the key of seismic
interpretation.

A big problem in the application of these seismic attributes is the effect
of random noise. The calculation of seismic attributes is based on the
different mathematical formula. For example, the impedance attrinutes are
integration of seismic data. It will also enhance random noise, which can
obscure the geological lineaments, such as the edges of geological feature
(Hocker and Fehmers, 2002; Fehmers and Hocker, 2003; Al-Dossary and
Marfurt, 2007). The quality of such edges and lineaments is directly related
to the effectiveness of noise-removing filter.

In the existing literatures, many linear or nonlinear filters have been
broadly used to remove noise and improve the interpretability of seismic
attributes (Al-Dossary and Marfurt, 2007; Liu et al., 2009a; Liu and Luo,
2012). In order to suppress noise while preserve the edges of geologic
feature, Luo et al., (2002) proposed the edge-preserving smoothing (EPS)
filter. It attemps to overcome the conflict between edge preserving and noise
suppression through a modification of running average smoothing
alogrithm.

EPS filter has been successfully applied to many seismic data cubes.
Luo et al., (2002) used EPS filter in seismic amplitude attributes to suppress
noise. Then, Al-Dossary et al., (2002) used 3D EPS filter to perform seismic
edge detection. AlBinHassan et al., (2006) used 2D and 3D EPS filter to
enhance the structure features in seismic impedance cubes. Marfurt (2006)
combined the multiwindow dip search, principal component filter and EPS
fitler to estimate 3D reflector dip and azimuth. Misra and Sacchi (2008)
used EPS filter in AVO attributes inversion to reduce random noise in
pre-stack seismic data. Al-Dossary and Wang (2011) used 3D EPS filter in
seismic attributes to implement many tasks, such as random noise remove,
footprints reduction, faults and unconformities identification and curvature
attributes enhancement. Halpert (2012) used EPS filter to segment seismic
images. Zhang et al. (2015a) used EPS filter as a regularization method in
seismic impedance inversion to better reflect the changes of stratum.

However, the filter window size of the conventional EPS filter is fixed.
Hence, the little geologic features smaller than the window size will be
suppressed (Luo et al., 2002; Al-Dossary and Marfurt, 2007; Zhang et al.,



305

2015a). The subsurface is so complicated and there are typically features
with a range of thickness. If the filter window size is too small, random
noise will not be sufficiently removed. To sovle this issue, we propose an
self-adaptive EPS (SA-EPS) filter. This proposed SA-EPS filter is
performed on model and real seismic data to demonstrate its feasibility.

METHODS
EPS filter

EPS attempts to look for the most homogeneous fragment around a
sample to be filtered in an input data set, calculate the average value of the
most homogeneous fragment and assign the average value to that sample
(Luo et al., 2002; Al-Dossary and Marfurt, 2007; Al-Shuhail and
Al-Dossary, 2020). It has been used to remove random noise in seismic
impedance data while preserve stratigraphic discontinuities (i.e., edges of
geologic bodies) (AlBinHassan et al., 2006).

An example of 1D S-point EPS filter is designed in Fig. 1, where a data
set with M model parameters around m; to be filtered is shown. First, five
5-point windows are chosen around m;, and the standard deviations for each
window are calculated. The one with the least standard deviation is selected
as the most homogeneous fragment of these array windows (We call this
least standard deviation as window factor). Next, the sample m; is replaced
with the average value of the most homogenous window. Then, the array of
windows move along the entire length of data set and the same procedure is
repeated at each sample. At last, the result is EPS filter output.
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Fig. 1. Design of 5-point EPS filter around sample m; to be filtered.

For n-point EPS filter, we will get » n-point windows and » standard
deviations for each sample to be filtered and one most homogenous window.
1D EPS filter can be generalized to 2D and 3D (AlBinHassan et al., 2006).

Fig. 2 shows a comparison between the actions of running-average
smoothing filter (one kind of mean filter) and EPS filter on a 1D impedance
model with two sharp edges. Fig. 2a shows the real 1D impedance model.
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Fig. 2b shows the same impedance model with random noise which
obscures sharp edges. Fig. 2c¢ shows the result of running-average
smoothing filter on the noise-contaminated model. Fig. 2d shows the result
of a 7-point EPS filter on the noise-contaminated model. We can see that,
the running-average smoothing filter can effectively reduce much noise, but
it cannot preserve sharp edges; compared to running-average smoothing
filter, EPS filter can both effectively suppress random noise and preserve
sharp edges.
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Fig. 2. Comparison between the actions of running-average smoothing filter (one kind of
mean filter) and EPS filter. (a) The real 1D impedance model with two sharp edges. (b)
The impedance model with random noise which obscures sharp edges. (¢) The result of
running-average smoothing filter on the noise-contaminated model. (d) The result of
7-point EPS filter on the noise-contaminated model.

Defect of conventional EPS

From the above texts, we see that the filter window size of EPS filter is
fixed. The little geologic features (e.g., channels, tiny fault or thin layers)
smaller than the filter window size will be suppressed (Luo et al., 2002;
Al-Dossary and Marfurt, 2007; Zhang et al., 2015b). On the other hand, if
the window size is too small, random noise will not be sufficiently removed.
The subsurface is so complicated and there are typically features with a
range of thickness. If a fixed window is used, there is a trade-off between
noise remove and small geologic features preservation.
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We use a 1D impedance model shown in Fig. 3a to reveal this trade-off
of conventional EPS filter. This model contains two layers with different
thickness. Fig. 3b shows the same model with random noise. First, a 4-point
EPS filter is performed on the noise-contaminated model and the result is
shown in Fig. 3c. We can see that random noise at thinner layer is
suppressed. However, random noise at thicker layer is not sufficiently
removed. Next, an Il-point EPS filter is performed on the
noise-contaminated model and the result is shown in Fig. 3d. We can see
that random noise is sufficiently removed in both thick and thin layer.
However, the edges of thinner layer are fully suppressed.

9.0 9.0
RRIC) o
§ Point A E '«.-‘H\_/
% Point B % }\/ \/\
3 L L ;= L |/ ]
g 60 / 5 60 | / L.\)
g [ | I - LA \/—\’\ 4
< S N M
o =3
E =

3.0

1 30 60 1 30 60
Sample number Sample number

9.0 9.0
~ © @
(\V; Nﬁ
2 L .-f_/_ "‘\_/\ / il = L
E) ]
Q Q
=1
k| \_,"'"_\/_\/ _§
a 2.

3.0 3.0

1 30 60 1 30 60

Sample number Sample number

Fig. 3. Comparison between the actions of different point EPS filter. (a) The real 1D
impedance model. (b) The impedance model with random noise. (¢) The result of 4-point
EPS filter on the noise-contaminated model. (d) The result of 11-point EPS filter on the
noise-contaminated model.

SA-EPS filter

An unsuitable choice of filter window size will suppress some little
geologic features, or do not sufficiently remove random noise. To solve this
issue, we propose a self-adaptive edge-preserving smoothing (SA-EPS)
filter through filter window size scanning.

Two figures are employed to show the principle of window size scanning.
First, two samples are chosen (sample A and sample B in Fig. 3a). These
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two points locate at different layers with different thickness. Sample A
locates at the thicker layer and sample B locates at thinner layer. A series of
EPS filters with different filter window size are performed on the two
samples. Record the window factors (i.e., least standard deviation for each
filter window size). The results are shown in Fig. 4. We can see that, the
window factors for different filter window sizes are different. For sample A,
10-point EPS filter has the smallest window factor. On the other hand, for
sample B, small point EPS filters have smaller window factors. Hence, one
can use filter window size scanning to self-adaptively choose the best filter
window size for each sample to be filtered.

Based on the above contents, the workflow of SA-EPS is as follows.
First, perform a series of EPS filters with a different filter window size at
the sample to be filtered. For example, we can apply 4-point to 21-point
filter to the model shown in Fig. 3. EPS filter with very small window size
is no use. Hence, the window size of less than 3 is not considered. Then,
calculate the window factors for each EPS filter and find the smallest one.
The one with the smallest window factor is chosen as the EPS filter with the
best-fitting window size for that sample. Next, replace that sample by the
value of the best-fitting EPS filter result. Finally, repeat the above procedure
at each sample to obtain the final SA-EPS filter output.

From the workflow of the SA-EPS filter, we can see that it is nothing
but an additional step of filter window size scanning before the procedure of
the conventional EPS filter. The filter window size scanning is used to
self-adaptively find the best fitting window size for each sample to be
filtered.
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Fig. 4. Window factor versus with filter window size. (a) For sample A shown in Fig. 3a.
(b) For sample B shown in Fig. 3a.

Fast EPS algorithm

From the workflow of SA-EPS filter, the realization of SA-EPS filter is
very time consuming. So, a fast EPS algorithm is proposed to accelerate the
computation speed.



We use a 1D 5-point EPS filter to show the principle of fast EPS
algorithm. Fig. 5 shows a vector with 9 samples around the m; to be filtered.
In the process of EPS filter, we will calculate five average values and
standard deviations around ms (i.e. the average values and standard
deviations for window 1, 2, 3, 4, and 5 shown in Fig. 5.). We notate E, and
D,(n=1, 2, 3, 4, and 5) as the average value and standard deviation for
each window. So,

1
E1=g(m1+m2+m3+m4+m5) , (1
1 - 291/2
D1=[52(mf_E1)] , @)
E 1
2=§(m2+m3+m4+m5+m6) , 3)
1 : 211/2
D2=[§2(mi_E2)] , (4)
and so forth.

In routine EPS filter, it calculates average value and standard deviation
for each window, separately. However, in fast EPS algorithm, we establish
the relation between two adjacent windows. For example, with E;, E,, Dy,
and D,, from mathematical relation, we have,

SE, = m, +my +m, +ms +mg = SE| +(mg —m,), )

6 mg—m,)’
5D22=2(m,-—E2)2=5D|2_% +(mg —my)-(mg +m -2E,)  (6)

ms —m,
Let 1= T and then have the follow equations,
E,=E +t , (7)
D> =D’ -1 +t(m, +m -2E)) . (8)

The same relation can be generalized to the other adjacent windows.
Hence, the average value and standard deviation of next window can be
calculated through the average value and standard deviation of last window.
Through the relation between two adjacent windows, the computation speed
of EPS filter is accelerated.
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In addition, when perform EPS filter at mg, there are four windows same

as ms. Hence, it just needs to calculate only one new average value and one
new standard deviation. It is also accelerate the computation speed.
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Fig. 5. Design of 5-point EPS filter around ms to be filtered.

MODEL TESTS

We use the 1D impedance model shown in Fig. 3 to show the feasibility
of the SA-EPS filter. Fig. 6a shows the same 1D impedance model shown in
Fig. 3. Then, the SA-EPS filter is performed on the noise-contaminated
model shown in Fig. 3b and the result is shown in Fig. 6b. We can see that
random noise is fully removed and sharp edges are preserved in both thick
and thin layers.

To quantitatively show the effectiveness of SA-EPS, we calculate the
relative errors (RE) for different filter results. The RE is calculated by the
following equation,

E=tm——, ©

where m is the noise-free model, m is the filtered results. The REs for

different filter results shown in Fig. 3¢, Fig. 3d and Fig. 6b are shown in

Table 1. We can see that, the RE for SA-EPS is smallest.
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Fig. 6. Comparison between the result of SA-EPS filter and real 1-D impedance model.
(a) The same impedance model shown in Fig. 3a. (b) The result of SA-EPS filter
performed on the noise-contaminated model shown in Fig. 3b.

Table 1. The REs for different filter results in the case of 1D impedance model.

Filter RE
4-point EPS 0.1257
11-point EPS 0.1001

SA-EPS 0.0270

To further show the feasibility of SA-EPS in complicated geologic
features, we perform a 2D impedance model test. The true impedance model
section is shown in Fig. 7a and its corresponding noise-contaminated is
shown in Fig. 7b, which contains 20% Gaussian random noise.

Then, the conventional 11-point EPS filter is performed on the
noise-contaminated model. The filter result is shown in Fig. 8a. From the
comparison between Figs. 7a and 8a, we can see that the filter result through
11-point EPS is basically consistent with the true impedance model.
However, many little geologic features are suppressed. Next, SA-EPS filter
is performed on the noise-contaminated model and the filter result is shown
in Fig. 8b. From the comparison between Fig. 7a and Fig. 8b, we can see
that SA-EPS filter gives a better result with less discordance compared to
the conventional EPS filter. The interfaces of layers and edges of lenticular
bodies in Fig. 8b are very clear (e.g. the edges of lenticular bodies within
white ovals).

In addition, we calculate REs for different filter results and list the results
in Table 2. We can see that, the RE for SA-EPS is smaller than EPS.
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Fig. 7. (2) The real 2-D impedance model. (b) The impedance model with random noise.
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Fig. 8. Comparison between SA-EPS filter and conventional EPS filter on the 2D

impedance model. (a) The filter result of 11-point EPS. (b) The filter result of the
SA-EPS.

Table 2. The REs for different filter results in the case of the 2D impedance model.

Filter RE

EPS 0.1508
SA-EPS 0.0781
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APPLICATIONS ON REAL SEISMIC IMPEDANCE DATA

There are many reasons motivated us to apply SA-EPS filter to help
interpret seismic impedance data. First, seismic impedance is related to the
reservoir rock physics characteristics (Ba et al., 2017, 2018; Pang et al.,
2019). Second, seismic impedance has higher resolution, which is gained by
combining information from well-log data in the process of seismic
inversion, compared to seismic amplitude data (AlBinHassan et al., 2006).
Especially, the seismic impedance has more explicit geological information.
Thin beds are better depicted on impedance sections (Zhang et al., 2014).

We use a seismic impedance cube from real work area to show the
application of SA-EPS filter in practice.
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Fig. 9. Comparison between SA-EPS filter and conventional EPS filter performed on real
seismic impedance data of inline 560. (a) The filter result of conventional 21-point EPS.
(b) The filter result of SA-EPS.
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The study area of this seismic impedance cube is located at the middle
section of the Kenxi area, Bohai Bay Basin, East China. The target
formation develops sandbody reservoirs, which is set of fluvial facies
deposition. The lithology includes silty fine sandstone and fine sandstone
from coarser below  to finer above The cementation is poor and
unconsolidated. The reservoirs’ physical quality is good, but changes greatly
in the plane. The impedance value of fluvial facies reservoirs is smaller
compared to the surrounding rocks.

high

TImpedance (kg/(s-km?2))

Inline
560 620

high

Impedance (kg/(s-km?))

(b

Fig. 10. Comparison of time slice between SA-EPS filter and conventional EPS filter
performed on real seismic impedance data of time 1.195s. (a) The filter result of
conventional 21-point EPS. (b) The filter result of SA-EPS.

The real seismic impedance cube, which is the result of damped least
square inversion (Cooke and Schneider, 1983), contains 121 in-lines from
inline500 to inline620, and 61 cross-lines from CDP690 to CDP750. First,
the conventional 21-point EPS filter is performed on this real seismic
impedance cube. Fig. 9a shows the filter result of 21-point EPS of inline 560.
Next, the SA-EPS filter is performed on the real seismic impedance cube.
Fig. 9b shows the filter result of SA-EPS of inline 560. We can see that, the
fault breakpoint is better defined in Fig. 9b compared to Fig. 9a and the
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noise is reduced (e.g., the location at the white rectangle). The interfaces
between layers are very obvious and many subtle geologic features stand out
in Fig. 9b (e.g., the location at the black ovals).

Further evidence to support SA-EPS filter is shown in time slices (i.e.
horizontal sections). Fig. 10 shows a comparison of time slices between the
filter results of the conventional EPS and SA-EPS of time 1.195 s. Fig. 10a
shows the filter result of conventional EPS, and Fig. 10b shows the filter
result of SA-EPS. We can see that, the lineaments of the channel sand are
clearer in Fig. 10b (note the location within the white rectangle). Many
subtle geologic features (e.g., some tiny channel sand) clearly stand out in
Fig. 10b (note the location within the white oval).

In addition, we add another seismic impedance section which crosses a
well from another real work area. The filter results of conventional 18-point
EPS and SA-EPS are shown in Fig. 11. In Fig. 11, the overlaid log curves
are P-wave impedance data from well-log in this work area. From the
comparison, we can see that, the filter result of SA-EPS is better-matched
with real log curve. Many thin layer interfaces are revealed in Fig. 11b.
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Fig. 11. Comparison between SA-EPS filter and conventional EPS filter performed on a
real seismic impedance section crossing a well. (a) The filter result of conventional
18-point EPS. (b) The filter result of SA-EPS.



DISCUSSIONS

To suppress noise while preserve edges of geologic features, lots of
method have been developed, such as sparse constraint or total variation
regularization in seismic inversion (Claerbout and Muir, 1973; Youzwishen,
2001; Zhang et al., 2014; Dai et al., 2014a, 2016), filter-like methods (e.g.
EPS filter, mean or median filter, and structure-oriented filter (Hocker and
Fehmers, 2002)), and so forth. In filter-like methods, there is always a
trade-off between noise remove and little geologic features preservation. In
the exiting literatures, Liu et al., (2009b) proposed a 1D time-varying
method to resolve this trade-off in median filter.

In fact, we solve this problem through filter window size scanning. All
of the filter-like methods are based on filter window analysis (i.e. analyzing
the properties of a series of filter windows), so the principle of SA-EPS
filter can be generalized to other filters, such as median filter and
structure-oriented filter. However, the disadvantage of filter window size
scanning should also be noted. Due to a number of window size needs to be
scanned, the computation cost is fairly large. Hence, we propose a fast EPS
algorithm. In addition, to accelerate the computation speed, parallel
computation is a good solution in practice.

CONCLUSIONS

Edge-preserving smoothing (EPS) method can suppress random noise in
seismic cubes while preserve major structural and stratigraphic edges. These
structural or stratigrapic discontinuities are very important for seismic
interpretaion. However, the conventional EPS filter use fixed filter window
size to perform in practice. Hence, the little geological features (e.g.,
channels, minor fault or thin layers) will be suppressed if their width are
smaller than used filter window size. On the other hand, if the filter window
size is too small, noise will not be removed sufficiently.

SA-EPS filter proposed in this paper can resolve this trade-off between
noise remove and little gologic features preservation through window size
scanning. That is: perform a series of EPS filters with different filter
window size and find out the best window size which has the smallest
window factor at each sample to be filtered. From the applications on both
model tests and real data examples show that, the interfaces or edges are
obvious in both geologic features in the filter result of SA-EPS; however,
the interfaces or edges for some little geologic features (e.g., thin layer, or
tiny channel sand) are suppressed in the filter result of conventional EPS.
SA-EPS filter is an effective method of random noise remove while
geologic features preservation.
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