JOURNAL OF SEISMIC EXPLORATION 30, 319-345 (2021) 319

MULTI-SCALE INVERSION OF SUBSURFACE DATA
AIMED AT CHARACTERIZING HETEROGENEOUS
CARBONATE RESERVOIRS

ALIREZA SHAHIN', MIKE MYERS?, PAUL STOFFA® and LORI HATHON?

Departmenl of Geology, University of Isfahan, Isfahan, Iran. arshah2013@gmail.com
Umverstly of Houston, Cullen College of Engineering, Houston, TX 77204, U.S.A.
3 University of Texas at Austin, Institute for Geophysics, Austin, TX 78758, U.S.A.

(Received November 26, 2020; revised version accepted March 17, 2021)

ABSTRACT

Shahin, A., Myers, M.T., Stoffa, P.L. and Hathon, L.A., 2021. Multi-scale inversion of
subsurface data aimed at characterizing heterogeneous carbonate reservoirs. Journal of Seismic
Exploration, 30: 319-345.

Inverting single-scale subsurface data have been adequately addressed in
literature. Nevertheless, multi-scale inversion have not been broadly studied to fully
characterize heterogeneous carbonate reservoirs. To address multi-scale inversion for
carbonates, our research deals with core plugs, well logs and seismic data in the
following three sequential stages:

* On the core scale, we make three independent porosity measurements (Archimedes,
uCT, and NMR). Measuring electrical resistivity, P- & S-wave velocities on brine
saturated core plugs along with joint modeling of the same properties using staged
differential effective medium (SDEM) theory, help us to fine tune the model parameters
through a global optimization algorithm. Core-calibrated multi-physics rock model
provides micro- & macro-porosities which are consistent with NMR and ¢ CT derived
porosities.

* Next, we extend the technique from core to well log scale and demonstrate it using
constructed logs from a real carbonate formation. In this stage, we integrate mass balance
equations to model bulk density and SDEM theory to model elastic and electrical
resistivity of dual-porosity carbonates. We design a stochastic global algorithm to
simultaneously invert petrophysical properties. By constructing a dual-porosity
formation, we demonstrate that the proposed workflow recovers the petrophysical
properties.

0963-0651/21/$5.00 © 2021 Geophysical Press Ltd.
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e Finally in the third stage, we propose an inversion algorithm in seismic scale to
simultaneously retrieve P&S-wave velocities and density. Similar to core- & log-scale
stages, Very fast simulated annealing (VESA) is the special global optimization algorithm
employed to minimize objective function. The optimization algorithm is stochastic in
nature and is enable to estimate uncertainty in model parameters. Unlike commercial
software, no assumption is made on correlations between P&S-wave velocities and
density. No smoothed background model is needed and only bounds on model parameters
are necessary.

KEY WORDS: multi-scale, inversion, carbonate, stochastic, optimization.

INTRODUCTION

It has been a while since the statistical rock physics (Mukerji et al.,
2001a) has been introduced to the geosciences community to address
inherent uncertainties involved in simplified physical relationships between
petro-elastic attributes. Statistical rock physics combined with cross-plotting

techniques have been performed to map probabilistic litho-fluid facies
(Avseth et al., 2001; Mukerji et al., 2001b).

The most popular cross-plotting technique is called the rock physics
template (RPT). In RPT analysis, the depositional and diagenetic trend
models are combined with Gassmann fluid substitution to make cross-plots
of elastic parameters, e.g., Poisson ratio versus acoustic impedance. Using
the RPTs, one is able to distinguish the litho-fluid effects and to extract
some of the petrophysical properties from inverted elastic parameters
(Avseth et al., 2005). However, the RPTs are not universal and they need to
be created for each individual petroleum basin. Besides, RPTs like other
cross-plotting approaches lead to semi-quantitative and indirect estimates of
petrophysical properties. Consequently, a direct inversion of seismic
reflectivity data to petrophysical properties without intermediate graphical
mapping of petro-elastic attributes is worthwhile to implement. This
technique has been addressed by several authors. Multivariate statistical
methods and neural networks (e.g., Fournier, 1989; Hampson et al., 2001)
are designed to estimate petrophysical properties from seismic data. In these
approaches linear and nonlinear relationships between seismic attributes,
e.g., seismic amplitude, acoustic and shear impedances, etc., and
petrophysical properties, €.g., porosity, are developed and calibrated at well
locations and will be used to predict petrophysical properties far away from
wells where only seismic observations are available. These methods do not
rely on any forward modeling schemes, e.g., rock-fluid physics and seismic
modeling. Also knowledge of the seismic wavelet is not required. However;
the methodology is only successful in developed fields where borehole data
are available for calibration and the entire expected ranges of desired
petrophysical properties are spanned by several well locations (Hampson et
al., 2001). As a result, methods based on rock-fluid physics and elasticity
theories have been extensively used in recent years to predict petrophysical
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properties from seismic data. Their physical foundations provide more
predictive power than statistical and neural network methods because these
methods are capable of identifying unknown lithology and fluid scenarios
not encountered at the well locations.

In this research paper, we first invert core scale measurements. Next,
we construct resistivity, elastic, and density borehole-derived well logs for
complex carbonates and convert well logs into petrophysical properties
using a novel inversion workflow. For doing so and similar to Shahin et al.,
(2020), we utilize Very Fast Simulated Annealing (VFSA), a global
optimization machine. Grain density, grain bulk & shear moduli, salinity,
critical porosity, electrical resistivity lithology exponents, elastic length
scales, primary & secondary porosities, water saturation, are grain, fluid,
fitting parameters, and petrophysical properties recovered. Finally, we
extend our multi-scale inversion to seismic data and propose a salient
workflow to jointly invert pre-stack seismic gathers into P&S-wave
velocities and density.

PORE COMBINATION MODELING TO SIMULATE ELECTIRCAL
RESISITIVITY

Electrical-resistivity (inverse of conductivity) has been widely utilized
to evaluate the hydrocarbon content of petroleum reservoirs. At the heart of
formation evaluation, there exists “Archie’s equation” (Archie, 1962) to
compute water saturation knowing reservoir porosity, brine resistivity,
lithology or cementation exponent (m), and saturation exponent (n).

While Archie’s model is mainly valid for single pore and clay free
formations, other models have been proposed for complex rocks with
multiple pore structure. Pore combination modeling (PCM) methodology
(Myers, 1989, 1991) is one those models which expresses the contribution of
each pore structure and its fluid content in permeability and resistivity. In
fact, PCM is an extension of Archie’s model representing rocks with
multiple pore structures. Thanks to a universal carbonate core
measurements, Myers (1991) obtained Archie’s lithology exponents for
vuggy, intergranular, and microporosity pore types of carbonate formations
worldwide. As summarized by Shahin et al. (2020), the following equation
gives the formation factor of a water-bearing rock with two pore structures:

P ) )"

F is the ratio of the resistivity of 100% water-saturated rock to brine
resistivity called formation factor. ¢; and ¢, are the fractional primary
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(intergranular or micro) and secondary (vugs and cracks) porosities,
respectively. ¢, = ¢; + ¢, is the total porosity. 4; is the lithology exponent
for primary pores, and A,, is the lithology exponent for secondary pores. In
the following, we will present new methodologies to obtain the primary and
secondary lithology exponents using resistivity core measurements and well
logs via global optimization. Fig. 1 represents the PCM methodology for a
dual pore carbonate formation.
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Fig. 1. A graphical representation of pore combination modeling (PCM). With the same
notation by Shahin et al. (2020), the formation factor (F) and total porosity, i.e., F-¢, are
plotted in log-log plane. Starting from point (F=1 and ¢,=1) a blue line with slope of 4;
illustrates the gradual decrease in total porosity due to sediment compaction. At this
stage, primary pores are the only pore system and total porosity (¢,) is equal to primary
porosity of ¢b;. Then, diagenesis comes into play and secondary pores start to evolve. A
black line with slope of A, represents the evolving of the secondary porosity of ¢,,. This
line has a different slope than the line of primary pores. When the diagenesis process is
finished, the sample has a total porosity of ¢, which is the summation of ¢, and ¢,. The
red line connecting the final position of sample in F-¢, plane with the point of (F=I1,
¢.=1) is the Archie’s line with slope of (m) representing the lithology exponent (Shahin
et al., 2020).
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STAGED DIFFERENTIAL EFFECTIVE MEDIUM TO MODEL
ELASTIC MODULI

Reuss lower bound and Voight upper bound have been historically
utilized to associate the elastic moduli of rock components with the elastic
moduli of the mixture. While the moduli of the mixtures are always located
between these bounds (Mavko et al., 2020), several researchers attempted to
better locate moduli exact position by adding more textural information on
how grains and pores are structured within the rocks. One of such attempts
was the work by Myers and Hathon (2012) who extended the differential
effective medium theory by introducing the concept of “Staging” on how the
process of sedimentation, lithification/ compaction, and diagenesis lead to
form sedimentary rocks. In staged differential effective medium (SDEM)
technique, inclusions of different length scale (aspect ratio) are gradually
added to a host assuming they only feel the average properties of the host
and neglecting interaction terms between the inclusions.

Similar to PCM to model resistivity, SDEM methodology models the
elastic moduli of dual-porosity carbonates. In fact, PCM is a special case of
SDEM, and these are general techniques for modeling the impact of
mineralogy and texture on permeability, resistivity, and elastic
measurements.

The well-known critical porosity (Nur et al., 1995) model is inherently
included in SDEM (Myers and Hathon, 2012). To simulate the elastic
moduli of a single-pore carbonate, we need a two-staged SDEM. The first
step is to integrate the elastic moduli from host to the critical porosity with a
length scale of L = 0 which mimics an iso-stress Reuss bound. The second
step is to integrate from critical porosity to total porosity with a length scale
of L#0 using:

1 (20) (B0

R le IO

M=M,

2)

where, @, is the critical porosity, M; is the inclusions’ modulus, L is the
length scale and related to this inclusion, and M, is the iso-stress bound of
the host and grain modulus at the critical porosity (Shahin et al., 2016).

A dual porosity carbonate can be simulated by adding an additional
integration step to model the secondary porosity (Myers and Hathon, 2012).
Fig. 2 illustrates the SDEM technique for a dual-porosity formation. The
elastic moduli (bulk and shear) are plotted versus total porosity (¢;). The
bound corresponding to length scale of L; connects the elastic moduli at
critical porosity (M,) to elastic moduli at zero porosity (Solid or grain
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moduli). This bound is associated with primary pores. The bound
corresponding to length scale of L, which does not pass through elastic
moduli at critical porosity is associated with the moduli change due to
change in secondary porosity. For a formation consisting of primary and
secondary pores the secondary-porosity bound intersects the primary bound
at the primary porosity.

In the following, we will present new methodologies to obtain grain
elastic moduli, critical porosity, primary and secondary’s L parameters, and
lithology exponents of each pore system from sonic and resistivity core
measurements and well logs via global optimization.

= |ntergranular Line
Semi-Archie’s m Line

= Vuggy Line

3

©

O

=

(8}

=

7

A0

i

o]
M.
0 D¢ Total Porosity Dc

Fig. 2. Illustration of staged differential effective medium (SDEM) technique for a dual
porosity carbonate. The elastic moduli of the mixture (M) and total porosity, i.e., M-¢,
are plotted in linear plane. ¢; is the primary porosity, ¢, is the secondary porosity, and
the sum ¢, = ¢;, P,, is the total porosity. Starting from point (¢, M,) the blue bound
with length scale of L; illustrates the gradual decrease in total porosity due to sediment
compaction. At this stage, primary pores are the only pore system and total porosity
(¢;) is equal to primary porosity of ¢;. Then, diagenesis comes into play and vugs start
to evolve. A black bound with length scale of L, represents the evolving of the secondary
porosity of ¢,,. This bound has a different length scale than the bound of primary pores.
When the diagenesis process is finished, the sample has a total porosity of ¢, which is
the summation of ¢, and ¢,. The red bound connecting the final position of sample in
M-¢, plane with the point of (¢, M) is the Semi-Archie’s line described in Fig. 1.
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MASS CONSERVATION TO REPLICATE BULK DENSITY

The following mass balance equations are used to replicate bulk
density for core and well log measurements. For this particular exercise, we
use tabulated calcite density of 2. 71 g/em’, brine with density of 1.05 g/cm3
and oil with density of 0.75 g/em’. In eqs. (3) and (4), Py, Pma » Pr» Po- and
pw are bulk density, grain density, fluid density, oil density, and brine
density, respectively. @, is the total porosity of ¢, = ¢;,¢,, and S,,; is the
total water saturation occupying primary and secondary pores.

Pp = Pma(1— @) +pr@¢ (3)

Pr = Po 1- Swt) + PwSwe > C))

MULTI-PHYSICS INVERSION OF CARBONATES IN CORE SCALE

Three independent porosity measurements on carbonate core plugs
have been made. These include porosities obtained from Archimedes, micro-
computerized tomography (LCT), and nuclear magnetic resonance (NMR).
In Archimedes technique the weight of core plugs in dry, saturated and
submerged conditions, pore volumes and porosity are determined. This
technique is still the most accurate method to estimate total porosity. The
porosity of core plugs using this method vary between 5 and 16 porosity
units.

Fig. 3. Micro-CT scan of the carbonate core plug. The left image is a horizontal and the
right one is a vertical slice through the 3D image acquired. Note that the majority of the
pore volume are vugs and microporosity is not visible.



326

In pCT technique, X-rays are utilized to provide high-resolution
images of geometry and microstructures. In Fig. 3, (Myers and Hathon,
2012) vertical and horizontal slices of the 3D volume are displayed. A
significant portion of the pore type are vugs and no other visible pore type
can be seen using uCT. We performed a segmentation technique using color
classification to measure the vuggy porosity of the core plugs. On average,
nCT-derived porosities are smaller than those estimated from Archimedes
and NMR. This is consistent with the fact that uCT cannot resolve the
microporosity.

NMR measures the porosity by application of a constant magnetic
field followed by oscillating frequencies to measure the amount of protons
processing around the constant magnetic field. The NMR measurements for
porosity closely follow Archimedes porosities within 1 to 2 porosity unit.
The smaller value for the NMR may be due to extremely small pores beyond
the resolution of the NMR. Fig. 4 shows the T, distributions of samples used
in this research. To better predict the contribution of each pore type, we
choose to fit a Weibull distribution to NMR response. To estimate the model
parameters for curve-fitting exercise a stochastic global optimization
(Ingber, 1989, 1993) technique called very fast simulated annealing (VFSA)
has been utilized. The detail of VFSA is summarized in the Appendix.

We choose to utilize the Weibull distribution as a base function for
curve fitting. This is due to the fact that Weibull is a versatile distribution
that can take on the characteristics of other types of distributions by varying
the value of the shape parameter. One particular type of distribution which
can be modeled via Weibull is Log-normal distribution. Log-normal
distribution is of significant interest because grain size distribution is
naturally a Log-normal distribution.

' The probability density function (PDF) for Weibull distribution is
given as:

Fein ) =42 ew|- ()]

x=0 k > 0 shape factor 1> 0 scale factor . %)

Most of the NMR T, distributions of our samples display bimodal
behavior, so we add up two Weibull distributions with different weighting
factors a; as:
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QA kg, Az, kg, aq, @3) = aqfi (6 A, ky) +
ayfr(x; A5, ky) where a; +a, =1 . (6)
The normalized error or objective function for the VFSA optimization
is as follows:

2%, [f (x))=NMR T2(i)]
™I Ce))+NMR T2(i)]

EQx; A, ke, Ag Koy, aq, a5) = (7

NMR T, data are discretized in T, domain with n the number of total
samples and x is:

x=Iln= . 8)

T2,0

T, o is the smallest T, used in the T, distribution (here 0.01 ms). There
are five independent model parameters, i.e., A1, k1, A5, ko, a4, to fit for each
core plug. It worth noting that the extension of this approach to tri-modal
distribution is straightforward where there will be 8 model parameters to fit
the NMT T, distribution. The fitting can be formulated as a constrained non-
linear optimization which we addressed via VFSA in this paper. The
optimized model parameters have been used in decomposing the NMR T,
response of all core plugs and then vuggy and microporosity of each core
plug computed. Fig. 4 illustrates the NMR T, distribution and the associated
bimodal Weibull distribution fits for one of the core plugs.

Analyzing the NMR response of all core plugs, we concluded that on
average vugs contribute 80-95 percent of NMR total porosity and only a
small fraction associated with microporosity. The NMR measurements
provide convincing evidence that a dual pore system exists in these core
plugs consisting of a connected microporosity with vugs. This information is
vital for the SDEM resistivity and velocity modeling in the next part.
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Fig. 4. Top panel shows NMR T, distribution and the associated bimodal Weibull
distribution fit. The dots are NMR measurements (10 porosity unit). The solid black line
is Weibull fit to the second mode or pore type which are vugs (9 porosity unit). The cyan
solid line is the Weibull distribution of the first mode or pore type which is microporosity
(less than 1 porosity unit). The bottom panel shows the cumulative distribution of NMR
T, signal displayed in top panel.
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The formation factor versus total Archimedes porosity is plotted in
Fig. 5. The different blue lines all extrapolated to F=1 and ¢,=1 are for 4,,
from zero to three. One of these lines (red one) is the microporosity line best
explained the petrophysical characteristics of these core plugs. There is a
large scatter of these data about any of the lines because there are two pore
types present and the amounts of both are changing. Fig. 6 displays the same
data plotted in F-¢b log-log plane. The microporosity trend line selected for
the data set is obtained from the non-linear optimization. The position that
vuggy porosity lines intersect the microporosity line will provide the amount
of each individual porosity. The vuggy porosity computed from resistivity
modeling along with the vuggy porosity derived from velocity modeling will
be used later in an inversion machine to optimize model parameters of both
velocity and resistivity models.
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Fig. 5. Plot of the formation factor versus Archimedes porosity. No trend exists because
there is a dual pore system of micro-pores and vugs.

Fig. 7 illustrates the Reuss and Voight average bounds for the
carbonate core plugs. Different values of L for both bulk and shear moduli
are also depicted. One of these lines (black one) is the microporosity line
best explained the moduli of these core plugs. Similar to the resistivity
model there is no obvious trend in these data because there are two pore
types present and the amounts of both are changing. Fig. 8 displays the same
data as shown in Fig. 7. The microporosity and vuggy porosity trends
selected for the data set are obtained from the non-linear optimization of
velocity and resistivity data. The position that vuggy porosity lines intersect
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the microporosity line provides the amount of each individual porosity. The
vuggy porosity computed from velocity modeling along with the vuggy
porosity derived from resistivity modeling will be used later in an inversion
machine to optimize the model parameters of both velocity and resistivity
models.
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Fig. 6. Plot of the formation factor versus Archimedes porosity. The optimum
microporosity lithology exponent (red line) is obtained from non-linear optimization. The
dashed blue lines are optimum lithology exponent for vugs.

To optimize the SDEM model parameters, we define an objective
function as the difference between vuggy porosities predicted from
resistivity modeling (¢p;") and the vuggy porosities computed from velocity
modeling ( @7, @¥S for bulk and shear moduli, respectively) to be
minimized. Index i indicates core plug numbers from 1 to n. During the
optimizations process several constrained are applied. For instance, the
computed moduli have to be always between Reuss and Voight average
bounds. Microporosity curve in velocity modelling has to intersect vuggy
porosity line for all the core plugs. Microporosity line in resistivity modeling
has to intersect vuggy porosity line for all the core plugs.
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Fig. 7. Bulk and shear moduli versus Archimedes porosity. The red curves (bulk moduli)
and blue curves (shear moduli) are for L = 0 to L = 1 spanning all the data unless C1
sample which is associated with an erroneous reading in P-wave traveltime. No trend
exists because there is a dual pore system of micro-pores and vugs. The black curves are
the optimum microporosity fits to the data.
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Fig. 8. Bulk and shear moduli versus Archimedes porosity. The optimum microporosity
L parameters (red for shear and green for bulk modulus) are obtained from non-linear
optimization. The dashed blue lines are drawn using the L = 1 for vugs.
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SDEM model parameters are critical porosity (¢.), bulk (M;) and
shear (M) moduli of grains, microporosity lithology exponent for resistivity
(A), vuggy porosity lithology exponent for resistivity (4,,), microporosity
parameter for shear modulus (L, ), microporosity parameter for bulk
modulus (L,,,;). Vuggy porosity L parameters for bulk and shear moduli are
set to 1.0 based on the previously published results (Myers and Hathon
2012). Table 1 summarizes all the model parameters as well as their mean
values for 200 runs of VFSA each with 200 iterations. Fig. 9 displays the
correlation of vuggy porosity estimated from velocity and resistivity. It also
shows a high correlation between vuggy porosity jointly estimated from
velocity-resistivity and the ones estimated from NMR and upCT
measurements.
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Fig. 9. Comparison of vuggy porosities estimated from different methods. The bottom
panels (lower left and lower right) indicate high correlations between velocity-derived
vuggy porosity (shear modulus here) and vuggy porosity from independent measurements
of NMR and micro-CT.
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Table 1. SDEM model parameters. Note that vuggy porosity L parameters for bulk and
shear moduli are set to 1.0 based on the previously published results (Myers and Hathon
2012). The rest of parameters are obtained from VFSA optimization.

SDEM Model Parameters Mean Value
Critical porosity 0.40
Bulk modulus (Gpa) 82.35
Shear modulus (Gpa) 45.08
L parameter for microporosity associated with bulk modulus 0.07
L parameter for microporosity associated with shear modulus 0.07
L parameter for vuggy porosity of bulk modulus 1.00
L parameter for vuggy porosity of shear modulus 1.00
Lithology exponent for microporosity associated with resistivity 1.49
Lithology exponent for vuggy porosity associated with resistivity 1.06

MULTI-PHYSICS INVERSION OF CARBONATES IN WELL LOG
SCALE

As proven methodologies to simulate the effects of texture and
lithology on elastic, resistivity, and permeability, PCM and SDEM are found
satisfactory to model pore network of complex carbonates on core scale
measurements. Now, we will extend this methodology to well log scale.

Fig. 10 displays a relatively thick carbonate reservoir with
intergranular and vuggy porosities. The reservoir is divided to three separate
zones including oil column on the top (~37 ft.), water leg in the bottom
(~33ft.) and a transition zone (~10 ft.) in the middle portion of the carbonate
formation. Note that we assume two different pore networks are fully
connected and that is why intergranular water saturation and vuggy water
saturation are equal to total water saturation. Table 2 summarizes the detail
parameters of the carbonate reservoir.

Fig. 11 displays the simulated well log responses over the dual
porosity carbonate formation shown in Fig. 10. Bulk density (p;,) is modeled
using mass conservation equation, P-wave slowness (DTCO) & S-wave
slowness (DTSM) modeled using SDEM, and electrical resistivity (R;) using
PCM. Model parameters are summarized in Table 2. As expected, distinct
fluid zones are clearly separated on resistivity log in logarithmic scale and
one can determine oil column, transition zone, and water leg from reservoir
top to bottom, respectively. This trend can be seen on density and sonic logs
in some degree, but it is not as clear as resistivity log due to the higher
combination impact of porosity and saturation on sonic and density logs.
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Fig. 10. Constructed petrophyscial properties of a carbonate reservoir. In the first three
tracks from left, red curves are intergranular, vuggy, and total porosities, respectively.
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Fig. 11. Plots of the well log responses simulated with proposed multi-physics modeling
over the dual porosity carbonate formation illustrated in Fig. 10. From left to right, the
first track is electrical resistivity replicated with PCM, the second track is bulk density
expressed by mass conservation, and the third and fourth tracks are compressional (P-
wave) and shear (S-wave) slowness simulated with SDEM.



Table 2. Reservoir, grain, {luid, and model parameters {or the dual porosity carbonate
formation.

Properties Symbol | Values Units
Reservoir thickness h 80 feet
Reservoir temperature T 60 °C
Irreducible water saturation Swirr 0.1 | Fractional
Residual oil saturation Sor 0.07 | Fractional
Salinity Sal 120 Kppm
Grain density Prma 271 gr/em’
Brine density Ow 1.05 gr/cm’
Oil density Po 0.75 gr/em’
Grain bulk modulus Kma 77 GPa
Grain shear modulus Uma 32 GPa
Brine bulk modulus Ky 25 GPa
Oil bulk modulus K, 0.75 GPa
Critical porosity D, 045 | Fractional
Vuggy lithology exponent Ay 1.0 | Fractional
Intergranular lithology exponent A 1.6 | Fractional
Vuggy length scale for bulk modulus Lk 1.0 | Fractional
Intergranular length scale for bulk modulus Lk 0.1 Fractional
Vuggy length scale for shear modulus Ly 1.0 | Fractional
Intergranular length scale for shear modulus L‘l.1 0.08 | Fractional




We depict the RPT/MPRT in Fig. 12, where the cross-plots of
resistivity and elastic properties (slowness, velocity, acoustic impedance,
and velocity ratio) are displayed. The MPRT of this kind help interpreters to
identify and separate litho-fluid facies. We intentionally utilize two different
rock templates in this figure. The first one is traditional RPT (Avseth et al.,
2005). These types of templates help seismic analysts to interpret seismic
inversion results. For example, from the top left panel in this figure, one can
conclude that oil-bearing and water-bearing zones can be separated using
velocity ratio and acoustic impedance seismic attributes where all the points
are color-coded by water saturation. From the top right panel in this figure,
one can clearly see the gradual impact of intergranular porosity on velocity
ratio and acoustic impedance seismic attributes where all the points are
color-coded by intergranular porosity. The second kind of template is mainly
derived from petrophysical properties including resistivity and
compressional slowness (DTCO). These types of templates help
petrophysicists to interpret well logs. For example, from the bottom left
panel in this figure, one can conclude that oil-bearing and water-bearing
zones can be separated using resistivity and DTCO well logs where all the
points are color-coded by water saturation. From the bottom right panel in
this figure, one can clearly see the gradual impact of intergranular porosity
on resistivity and DTCO well logs where all the points are color-coded by
intergranular porosity.
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Fig. 12. Multiphysics rock templates created using different attributes. Left panels are
color-coded with water saturation and highlight the separation of water-bearing from oil-
bearing zones. Right panels are color-coded with intergranular porosity and highlight the
impact of intergranular porosity on resistivity, velocity ratio, acoustic impedance, and P-
wave slowness. See text for details.
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As implemented by Shahin et al. (2020), we utilize the same
optimization engine (VFSA) to minimize the objective function (See the
Appendix for details). In this paper, an objective function is defined as the
root mean square of differences between simulated and observed well logs
including density, resistivity, and P&S-wave slowness logs (DTCO and
DTSM). Two sets of parameters are defined in the optimization workflow.

Global parameters consist of grain density, grain bulk and shear
moduli, salinity, critical porosity, intergranular lithology exponent for
resistivity, intergranular L. parameter (length scales) for bulk and shear
moduli. Global parameters remain constant over the depth interval of
interest. Vuggy’s lithology exponent for resistivity as well as vuggy’s L
parameters for bulk and shear moduli are set to 1.0 based on the previously
published results (Myers and Hathon, 2012). In VFSA optimization
structure, we evaluate the global error function to update the global model
parameters.

Local model parameters changing as functions of depth include
intergranular porosity (@;), vuggy porosity (¢,,), total porosity (¢;) and
water saturation (S,,) at each depth interval. In VFSA structure, we evaluate
the local error function to update the local model parameters in the
corresponding depth interval.

We design an objective function which has three terms. The first term
is the difference between resistivity well log data (R°?S) and modeled
resistivity (R°"™) using the PCM methodology. The second and third terms
are the difference between DTCO and DTSM well log measurements
(DTCO°PS- and DTSM®PS') and their corresponding simulated logs using the
SDEM model (DTCOS"™ and DTSMS™™). Note that all the terms are
normalized to the summation of well log observations and simulated well
log responses. This will facilitate the quality control of error (objective or
cost) function.

AE = n (Rsim- — Rops)® ¥ (DTCOSM- — DTCOOPS)
?=1(R5im- + Robs.)z ?=1(DTCOSim. + DTCOObS')Z

Z?zl(DTSMSlm_DTSMObS)Z
; 2
*  (DTSsMsim-4+pTSMODS.)

(10)

To converge the VFSA optimization and to obtain meaningful
physical model parameters, we apply several constraints. Some of the
important ones are as follows:
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1. In each depth interval, the vuggy and intergranular porosities are
smaller or equal to given total porosities.

Pi =@, (11)

Py = @¢ (12)

2. In each depth interval, the sum of vuggy porosity and intergranular
porosity should be equal to total porosities.

it Py =@ (13)

3. The upper and lower search bounds on total porosity are computed
from density log. Initial upper and lower bounds are first computed
using a heavy mixture (heavy grain and water) and a light mixture
(light grain and hydrocarbon), respectively. Then, safety factors in
percentage are added to and subtracted from initial upper and lower
bounds, respectively, to form conservative search bounds (Fig. 13).
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Fig. 13. Plot of true total porosity, true critical porosity, density porosities obtained from
density log assuming know matrices and fluids, and lower and upper bounds on total
porosity to be used in VESA optimization.
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In Fig. 14, single realizations of true and inverted petrophysical
properties and associated well log responses are overlaid in different panels.
Note that petrophysical properties (intergranular, vuggy, total, and water-
filled porosities) and well logs (Resistivity, DTCO, DTSM, and Density) are
estimated precisely in oil column, water leg, and transition zone.

Fig.15 shows the performance of inversion workflow to recover
global parameters by minimizing the normalized objective function. Note
that the mean value of 100 realizations is close to the true value of each
global parameter.

MULTI-PHY SICS INVERSION OF CARBONATES IN SEISMIC SCALE

Now, we utilize SDEM technique (already applied on core data and
well logs) to replicate P&S-wave well logs. Then, we use full elastic
reflectivity algorithm (Kennett, 1983) to simulate pre-stack seismic gathers.
Finally, a novel stochastic seismic inversion method is designed to retrieve
elastic properties and bulk density. Conditioned and NMO-corrected pre-
stack seismic gathers in time and slowness domains are the main input.
Inversion process can be executed in two different modes by replicating
either NMO-corrected or raw synthetic gathers. In the latter mode, raw
gathers are generated and NMO-correction is applied internally on raw
gathers using intermediate P-wave velocity in each iteration. Full elastic
reflectivity is the forward modelling algorithm utilized to replicate pre-stack
seismic gathers. VFSA is the special global optimization algorithm
employed to minimize objective function. The optimization algorithm is
stochastic in nature and is enable to estimate uncertainty in model
parameters. Unlike commercial software, no assumption is made on
correlations between P&S-wave velocities and density. No smoothed
background model is needed and only bounds on model parameters are
necessary. The proposed workflow is claimed to recover sharp boundaries.
This is due to the fact that non-liner full elastic reflectivity is used instead of
linearized Zoeppritz equations. Thin beds are also recovered for the same
reason and because of high resolution model parameters provided by
stochastic component of the workflow.

We intend to use VFSA which naturally has a higher chance to find
the global optimum of the objective function. In this paper, an objective
function is defined as the root mean square of differences between simulated
and observed pre-stack seismic gathers. The model parameters are locally
time-dependent variables. These parameters are P-wave velocity, S-wave
velocity, and density. During the optimizations process appropriate
constraints are applied.
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Fig. 16. Plots of the true well log responses and their inverted values over a thick dual-
porosity carbonate formation containing intergranular and vuggy pores. In all tracks, blue
curves are true well log responses, red curves are inverted properties obtained from the
averaging of 50 independent realizations. Soft and stiff bounds are also displayed in black
and pink, respectively.

Fig. 16 illustrates a relatively thick and dual-porosity carbonate which
is partially saturated with oil for the upper part of the formation. The
residual water saturation in the upper portion is about 10%. The lower
portion is fully water saturated. The middle part is the transition zone. To
model the density log, calcite with density of 2.71 g/cm?, brine with density
of 1.05 g/cm®, and oil with density of 0.75 g/cm® are used. P&S-wave
velocities are modelled using SDEM, matrix bulk and shear moduli of 77
and 32 GPa and a critical porosity of 0.45.
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Fig. 17. Cross plots of the true well log responses for the dual-porosity carbonate
formation containing intergranular and vuggy pores. Left panel is color-coded with water
saturation and right panel with intergranular porosity.
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As can be seen in Fig. 16, the inversion workflow is capable of
matching the model for the three portions of carbonate formation (water leg,
oil column, and transition zone) and retrieving P-wave velocity, S-wave
velocity, and density with high precision. Note that the mean value of 50
realizations is very close to the true value of properties.

Fig. 17 shows the rock physics cross plots for dual-porosity carbonate
formation displayed in Fig. 20. As seen, water leg and oil column can be
separated using the left panel. Gradual decrease in acoustic impedance and
increase in Poisson’s ratio are the indication of increase in intergranular
porosity (right panel).

Fig. 18 shows the performance of inversion workflow to match true
and synthetic pre-stack seismic gathers. As seen, the difference between true
and mean synthetic gathers are close to zero and this emphasizes the power
of the inversion machine.
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Fig. 18. Plots of the true (left track) and synthetic seismic (middle track) responses over
the dual-porosity carbonate formation. Full elastic reflectivity is utilized as the modeling
algorithm. The right track is the difference between true and synthetic seismic. Note that
synthetic response is simulated for P&S-wave velocities and density obtained from the
averaging of 50 independent realizations.



CONCLUSION

On core scale, we propose the PCM-SDEM technique to
simultaneously simulate the resistivity and velocities data for complex
carbonate formations. The proposed methodology consistency estimate
micro-& vuggy porosities from the data of various physics. The technique
also assists petrophysicists and geophysicists by providing petro-electro-
elastic models which are verified by other complementary data such as
nuclear magnetic resonance and micro-computerized tomography.

On well log scale, we propose an integrated multiphysics technique to
simultaneously replicate resistivity, density, and the elastic responses of dual
pore carbonates. We construct the well log responses using the multiphysics
models. We then design a customized VFSA search engine to perform an
innovative inversion algorithm. The significant parameters recovered
through the optimization algorithm are grain properties (density and elastic
moduli), salinity, critical porosity, resistivity-sonic model parameters,
intergranular porosity, vuggy porosity, total porosity, and water saturation.
In the proposed workflow, one can seamlessly quantify the uncertainty of
global and local model parameters. For doing so, we randomly initialize the
VFSA optimization several times and obtain independent realizations at each
iteration.

Finally, we extend our multi-scale inversion to seismic data and
propose a salient workflow to jointly invert pre-stack seismic gathers into
P&S-wave velocities and density. Elastic and density well logs have been
constructed using SDEM and mass balance equations for a relatively thick
dual-porosity carbonate reservoir. Then, pre-stack seismic gathers are
simulated using full elastic reflectivity seismic modelling. Then, a stochastic
global optimization algorithm has been designed to invert pre-stack seismic
gathers. Locally time-dependent P&S-wave velocities and density are the
main properties estimated via this inversion algorithm. Uncertainty
estimation of retrieved properties is a natural outcome of the proposed
workflow. Uncertainty of these properties will be quantified via independent
implementation of the stochastic optimization initialized with random model
parameters.

Our future research will be to invert pre-stack seismic data directly
into petrophysical properties. The products of such an inversion will be
mineralogy, pore-type, porosity, and water saturation of carbonate
reservoirs.
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APPENDIX
VERY FAST SIMULATED ANNEALING (VFSA) OPTIMIZATION

One needs to consider a global optimization algorithm when dealing
with significant non-linearity in the cost/error function, otherwise optimizing
the error function might lead to finding local minima/maxima in inversion
process. Several authors find VESA (Ingber, 1989, 1993), as an amazing
optimizer which not only is a global search engine, but also a stochastic one.
Monte Carlo Guided (MCG) search is at the heart of VFSA. Samples in
model space are taken using MCG from 1D Cauchy distribution which is a
function of so call temperature. Similar to solid heating process and gradual
cooling until reaching to minimum energy state, VFSA has already have
several applications in geosciences and petroleum engineering (Sen and
Stoffa, 2013).



