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ABSTRACT

Ma, X., 2021. Fast line-search for full waveform inversion in the Huber norm. Journal of
Seismic Exploration, 30: 347-364.

The misfit functions decide the robust performance of full-waveform inversion
(FWI) when the data is contaminated by noise. Huber norm combines the L2 norm when
residuals are small and L1 norm when residuals are large, which compromise the merits
of them. It not only improves the anti-noise ability with the L1 norm, but also keeps
smoothness for small residuals with the L2 norm. Line searches are always important for
FWI process. Step-length can typically be calculated using an inexact or exact
line-search method. Optimal step-length can prevent the over- or under-estimations, and
make FWI to reach a global minimum along searching direction with fast convergence
rate. Exact line searches for local optimization methods can be performed very
efficiently for computing solutions in robust norms, thereby promoting convergence rate
of FWI. Therefore, we derive an exact line search method, i.e., the analytical step-length
method (ASLM), for the Huber norm. Through numerical tests on noise-free and noisy
data of Overthrust model, we demonstrate the efficiency of ASLM for Huber norm. In
addition, we also compare Huber with L2 norm on the data contaminated by
non-Gaussian noise, such as ground-motion noise. We think that ASLM is an efficient
optimal step-length estimation method for the Huber norm in FWI. Meanwhile, the
Huber norm makes the FWI more robust than the L2 norm alone.

KEY WORDS: time-domain full waveform inversion, Huber norm,
exact line-search method, analytical step-length method.

INTRODUCTION

Full waveform inversion (FWI) is becoming a powerful geophysical
tool to describe the subsurface geological structures, evaluate soil properties,
monitoring CO, sequestration, and characterize energy reservoirs. Lailly
(1983) and Tarantola (1984) originally proposed adjoint techniques to
calculate the gradient of the data misfit, and many evolved approaches to
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waveform inversion algorithms have since appeared (Bunks et al., 1995;
Pratt and Worthington, 1990; Pratt et al., 1998; Plessix, 2006; Shin and Cha,
2008). FWI has increasingly potential to achieve the high-resolution
velocity estimate, but it suffers from difficulties such as non-linearity,
ill-posedness, and high computational cost (Brossier et al, 2010); in
addition, for the real seismic data we need face the obstacles including the
absence of low-frequency data and noise (Ha et al., 2009; Liu et al., 2017).

FWI is a data-fitting procedure, aiming to minimize a misfit function
that is defined as the difference between numerically calculated seismic data
and observed data (Lailly, 1983; Tarantola, 1984; Virieux and Operto, 2009).
Noise is an important issue for FWI, because its present will affect the
stable and convergence of the inversion procedure (Wang and Rao, 2006).
And geophysicist have to face the reality that real seismic data is always
polluted by many kinds of noise, such as ambient noise. The anti-noise
ability of FWI mainly depends on the misfit functions. Researches think that
the Huber norm can provide effective results in the presence of outliers and
non-Gaussian noises (Guitton and Symes, 2003; Ha et al. 2009; Brossier et
al., 2010). The Huber norm combines the 1.2 norm when residuals are small
and L1 norm when residuals are large, thus compromising the merits of
them. In this manner, it not only improves the anti-noise ability with L1
norm, but also keeps smoothness for small residuals with an L2 norm which
can provide reliable results in the presence of Gaussian noise (Ha et al.,
2009; Brossier et al., 2010).

The threshold in Huber norm controls the transition between these two
different behaviours, which is an essential point providing the effectiveness
of the practical application of the Huber norm for FWI. Bube and Langan
(1997) proposed that the threshold value is to be roughly 0.6 times the
standard deviation of the residual of the observed data and calculated data,
or 0.8 times the mean deviation of residual. They thought that thus choosing
is consistent with the assumptions made on the probability density by
minimizing the misfit function. And Brossier et al. (2010) proposed that the
threshold value is fixed to 0.2 times the mean of the observed data, and they
thought that this setting is practically, and to be less sensitive to outliers in
the data than the max value of the observed data indicated by Guitton and
Symes (2003). This paper mainly study the step-length estimation method
that is suitable for the Huber norm, so we do not provide the research about
how to find the threshold. It remains an important issue for future study.
Here we just adopt an empirical calculation method from previous works
(Bube and Langan, 1997; Bube and Nemeth, 2007; Ha et al., 2009).

FWI generally begins with an adequate good initial model, then
computes the search direction and step-length, updates the subsurface
parameters iteratively, and eventually derives high-resolution models of the
subsurface by exploiting the full information of wavefield records. Optimal
step-length is necessary to reach a global minimum along search direction
with fast convergence rate. Inexact or exact line-search techniques are
currently used to compute the step-length for many meaningful algorithms
for nonlinear minimization problems, especially nonlinear seismic inverse
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problems (Pratt et al. 1998; Bube and Nemeth, 2007). To date, many
researchers have studied the step-length estimation method. Backtracking
line-search method (BLSM) is a typical inexact line-search method
(Nocedal and Wright, 1999) and parabolic fitting search method through
three points (PFSM-3) is a common exact line-search method (Operto et al.,
2007; Vigh et al., 2009; Ma et al., 2019), they are both widely used in FWI
(Hu et al., 2009; Dos Santos and Pestana, 2015; Operto et al.,, 2007; Tape et
al., 2007; Vigh et al., 2009; Xu and McMechan, 2014; Liu et al., 2017).
Considering the exact step-length estimation is closely related to the misfit
function, in this paper, we propose the analytical step-length method
(ASLM) for the Huber norm in FWI. Noise-free and noisy data simulated
from Overthrust velocity model demonstrate that ASLM combined with
Huber norm can obtain a high-resolution inverted velocity with lower
computational cost compared with PFSM-3.

The paper is organized into four parts. The first section is the
Introduction. In the next, the theory of FWI in the time domain is presented,
and the ASLM of the Huber norm is derived. In the third section, noise-free
and noisy data examples of ASLM and PFSM-3 in the Huber norm—are
first presented to demonstrate the effectiveness of ASLM. Then, we
compare the robustness of Huber-norm and L2-norm on the synthetic
seismic data with strong ground-motion noise.

THEORY
Review of full waveform inversion in the time domain

The 2D constant density acoustic-wave equation in time domain is:
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where ! represents the time, (x,z) represents the position, p(x,z.t)
represents the pressure field, V represents the acoustic velocity, v
represents the Laplacian operator, and s(x,z,¢) represents a source term.

FWI is an optimization problem, aiming to minimize a misfit function f,
which measures the difference between the observed data p"”"’(x,z,t) and
calculated data p°”(x,z,¢). We adopt the Huber norm as the misfit function
(Huber, 1973):
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where & is the threshold between the L1 norm and L2 norm, and

SIS ) o

It is smooth near zero residual, weights small residuals by mean square,
and treats large residuals with L1 norm (Fig. 1). Combining L1 and L2
norms in this manner, Huber norm becomes differentiable everywhere
(Brossier et al., 2010).

The gradient of the Huber norm can be efficiently computed by the
adjoint-state method (Plessix, 2006). Primarily, there are three steps in this
process: forward propagation, backward propagation, and gradient
calculation. The gradient formula can be expressed as:
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where A represents the backward propagation wavefield, backward
propagation residual can be expressed as:

L for O<lr|<e
backc(r)= £ . (5)

sign(r) for e = |r|

We find that the change of the misfit function only changes the adjoint
source but not the entire gradient expression, so FWI has the similar
gradient expression for the 1.2 and L1 norm.

a) b)
8 4
L, — D) L, —

7 L ---- 2_- 3 Ly ----

6 Huber ---- =2 Huber ----
s £
= 1
S 4 : 0
Z 3 \ // P _jlesdiosasaiil

af el 3-2

| \__\..‘\_ // 2)_3

0 -4

-4 -3 -2 -1 0 1 2 3 4 -4 -3 -2 -1 0 1 2 3 4

Fig. 1. a) The values of L1, L2, and Huber as functions; b) The associated residual
source amplitude in the gradient expression (Brossier et al., 2010).
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The velocity model can be updated by:

m.. =m;+oa.d. ) (6)

where m.. and m; represent the (k+1)-th and k-th iteration model
parameters, d, represents the search directionand, ¢¢; represents the
step-length at the k-th iteration. The search direction is determined by the
optimization methods, such as the steepest-descent method and the
conjugate gradient, quasi-Newton methods, e.g., the limited memory BFGS
(L-BFGS) method, truncated Newton solution or Newton method (Mora,
1987; Liu and Nocedal, 1989; Pratt et al., 1998; Brossier et al., 2009;
Virieux and Operto, 2009; Warner et al, 2013; Hager and Zhang, 2006;
Me'tivier et al., 2014). We use the L-BFGS optimization method to
minimize the Huber misfit function because it can guarantee the
convergence to global minima and entail less computational costs (Guitton
and Symes, 2003).

Analytical step-length method of the Huber norm

If we adopt an optimal step-length estimation in FWI process, usually
can improve the convergence rate and require fewer iterations to reach the
global minimum. The exact step-length estimation is closely related to the
misfit function. Therefore, we derive an optimal step-length formula for the
Huber norm in FWIL In the current state, applying the Taylor-series
expansion of & to the first order, the misfit function can be approximated
as follows:

ptu}(Ck+O!kdk)zp“d(6‘k)+ak [Vpﬁul(Ck)]Tdk . D
So, we can obtain the misfit function in a new formula:
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If the value of the misfit function approaches a local or global minimum,
eq. (8) satisfies the following condition:
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Thus, we can obtain the general form of the optimal step-length formula:
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where C; represents a coefficient, @, represents the test step-length,
which need satisfy the following condition:

Sp=p(x,2.)- P (x.2.1), (11)
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From eq. (10), we think that the calculation of ASLM need update the
simulated data by a trial step-length to calculate the wavefield difference,
and it must store the wavefield residual §p of every shot at every iteration.

NUMERICAL EXAMPLES

In this section, noise-free and noisy synthetic data generated from
Overthrust velocity model (Ravaut et al. 2004) are firstly adopted to
demonstrate the efficiency and robustness of the ASLM with the Huber
norm, then compare it with PFSM-3. Secondly, we compare the robustness
of the Huber and L2 norms when non-uniform noise exists. Strong
ground-motion noise is added to the synthetic data of the Overthrust model.
In addition, for all numerical tests in this study, the threshold value & for
the Huber norm is fixed to be roughly 0.6 times the standard deviation of the
data residual,

=SS ) )

thus choosing is indicated from previous work of Bube and Langan (1997).



To improve the chances of avoiding cycle skipping and to attain the
global minimum rapidly for FWI in time domain, we adopt the multi-scale
method to prevent the misfit function from falling into local minima (Bunks
et al., 1995; Boonyasiriwat et al, 2010; Ma et al, 2017). The
finite-difference method is employed in all examples for forward
source-propagation and back-propagation of the residuals, and we apply the
perfectly-matched-layer (PML) condition at boundaries to absorb the
artificial interference (Bérenger, 1994).

Noise free data

Here, we mainly demonstrate the efficiency of ASLM, and compare it
with PFSM-3 for the Huber norm by the tests on noise-free data generated
from Overthrust velocity model. FWI is highly nonlinear and the results
strongly depend on the accuracy of the initial model in the framework of
local optimization (Brossier et al., 2010). So we use the smooth velocity
model and linearly increasing velocity model, respectively, as the initial
model to test the robustness of this step-length estimation method in FWI
process.

a) Distance(km)

0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 (km/s)

b) Distance(km)
0 1.0 2.0 3.0 4.0 5.0 6.0 770 (km/s)

Fig. 2. a) True Overthrust velocity model; b) Smooth velocity model used as initial
model.
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The Overthrust velocity model used in all examples is resized to 601x150
grid samples in the horizontal and vertical directions while the grid spacing
is 12 m in each direction. The synthetic data are generated from 60 shots
separated by an interval of 120 m. To record each shot, 601 receivers are
regularly distributed in the horizontal direction at 12 m intervals. The source
signal is a Ricker wavelet with a central frequency of 18 Hz. The sampling
interval is 1 ms, and the total recording length is 3 s. The acquisition
geometry of all numerical tests is same. Fig. 2a shows the Overthrust
velocity model used to synthesize the observed data, Fig. 2b shows the
smooth velocity model used as the initial model.

Figs. 3a-3b show the inversion results using the ASLM and PFSM-3.
Compared with the true Overthrust velocity model in Fig. 2a, we find that
ASLM recover all the features and structures of the Overthrust velocity
appropriately, which is comparable with the inverted velocity model
obtained using PFSM-3. To see how much information our algorithm
recovered, we show velocity profiles extracted at the horizontal position of
3.0 km, 4.8 km, and 6.0 km, respectively, in Figs. 4a-4c. The inverted
velocity profiles of ASLM and PFSM-3 appear to show a trend similar to
the true velocity profile. Obviously, from the analysis of inversion results,
we think that the inversion accuracy of ASLM is satisfied.

a) Distance(km)

0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 (km/s)

b) Distance(km)
0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 (km/s)

Fig. 3. Inverted velocity models obtained by using a) ASLM and b) PFSM-3 in the
Huber-norm. Smooth velocity model in Figure2b is used as initial model.
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a) Velocity(km/s) b) Velocity(km/s) <) Velocity(km/s)
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Fig. 4. Velocity profiles at horizontal positions of a) 3.0, b) 4.8 and c¢) 6.0 km. Blue
represents the true model (Fig. 2a), black is the initial model (Fig. 2b), green is the model
inverted using the ASLM(Figure 3a), and red is the model inverted using the PFSM-3
(Fig. 3b).

To compare the convergence rates, we calculate the normalized
root-mean-square (rms) error of the velocity model through the inversion
(Fig. 5a). From this figure, we can see that ASLM obtain satisfied FWI
result and converge faster than PFSM-3. While Fig. 5b presents the iteration
number and the number of step-length attempts (each attempt means an
extra forward modeling) required by the two step-length estimation methods.
The iteration numbers of ASLM are 79 which are smaller than those of
PFSM-3. And PFSM-3 need at least two extra misfit function calculations to
get the optimal step-length at every iteration. ASLM also need one extra
attempt to calculate the optimal step length. Therefore, the extra forward
modeling calculations of PFSM-3 and ASLM are 79 and 195, respectively.
From the above analysis, it is found that the total forward modeling costs of
the ASLM is less.
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---PFSM-3 [X1Iteration number
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Fig. 5. a) Normalized rms errors of the FWI inverted model by using ASLM and
PFSM-3; b) total number of iterations and number of extra calculations of forward
modeling to achieve the final results by using ASLM and PFSM-3.

To test our method with different initial approximations for Overthrust
model in FWI, here we choose the linearly increasing velocity model as the
initial model (Fig. 6), which delete some macro velocity features compared
with the smooth initial velocity model in Fig. 2b. The velocity model
obtained from ASLM and PFSM-3 is shown in Fig. 7. We can find that the
inversion result of ASLM is comparable with that of PFSM-3. This
expectation is confirmed by the normalized rms error of the velocity model
through the inversion in Fig. 8. Although both methods are successful in
recovering fine details of the true velocity model, ASLM proved more
efficient, due to the iteration number and the number of failed step-length
attempts are smaller than PFSM-3.

Distance(km)

0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 (km/s)
5.4

4.4

3.4

2.4

Fig. 6. Linearly increasing velocity model used as the initial model.
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a) Distance(km)

0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 (km/s)

b) Distance(km)
0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 (km/s)

5.4

Fig. 7. Inverted velocity models obtained by using a) ASLM and b) PFSM-3 in the
Huber-norm. Linearly increasing velocity in Fig. 6 is used as the initial model.
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Fig. 8. a) Normalized rms errors of the FWI inverted model by using ASLM and
PFSM-3 in Fig. 7; b) total number of iterations and number of extra calculations of
forward modeling to achieve the final result by using ASLM and PFSM-3.

Considering that FWI is sensitive to the accuracy of the initial model
in the framework of local optimization, we use two different initial velocity
models, smooth velocity model and linearly increasing velocity model, to
test the efficiency of ASLM. The above noise-free data examples both
demonstrate the robustness of ASLM we proposed in this paper. Although
ASLM and PFAM-3 both are successful in recovering fine details of the
true velocity model, ASLM proves more computational efficient.
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a) Distance(km)

0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 (km/s)

b) Distance(km)
0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 (km/s)

Fig. 10. Inverted velocity models obtained from data contaminated with strong
ground-motion noise by using a) ASLM and b) PFSM-3 in the Huber-norm. Smooth
velocity model in Fig. 2b is used as initial model.

a) Velocity(km/s) b) Velocity(km/s) c) Velocity(km/s)
2.0 3.0 40 50 6.0 2.0 3.0 40 5.0 6.0 2.0 3.0 40 50 6.0
0= TR , 0= ——
—Real
0.2 0.2F 0.2 —Initial
’ : —ASLM
—PFSM-3
0.4+ 0.4 0.4+ —_—
0.6 0.6 0.6F
E ) E
i 0.8 E 0.8 E 0.8
- Ef £
g 1.0 S 10 & 1.0
a a a
1.2 1.2y 1.2
1.41 1.4 1.4
1.6 1.6 1.6
1.8 1.8 1.8

Fig. 11. Velocity profiles at horizontal positions of a) 3.0, b) 4.8 and c¢) 6.0 km. Blue
represents the true model (Fig. 2a), black is the initial model (Fig. 2b), green is the model
inverted using the ASLM (Fig. 10a), and red is the model inverted using the PFSM-3
(Fig. 10b).
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Fig. 12a shows the normalized rms error of the velocity model through
the inversion. For the noisy data set, ASLM converge faster than PFSM-3,
but PFSM-3 provides slightly better FWI result. Fig. 12b presents the
iteration number and the number of extra attempts required by the two
methods, it is found that the total forward modeling costs of the ASLM
method is lower.

a) 11

—ASLM {X3lteration number
- PFSM-3

¥¥ Extra calculations of forward modeling
400

o

Number of iterations

Normalized rms (%)

0 20 40 60 80 100

Number of iterations

Fig. 12. a) Normalized rms errors of the FWI inverted model by using ASLM and
PFSM-3 in Fig. 10; b) total number of iterations and number of extra calculations of
forward modeling to achieve the final result by using ASLM and PFSM-3.

The data set contaminated with strong ground-motion noise in this FWI
process again demonstrate the robustness of ASLM. And we think that in
terms of the computational cost, ASLM performs outstanding in Huber
norm.

Comparisons of Huber and L2

Here we compare the efficiency between the Huber and 1.2 norms. For
the Huber norm, we use the ASLM because of the satisfactory results
obtained in the above examples, and compared the results obtained with the
L2 norm combined with the ASLM under the same circumstance (Ma et al.,
2019). Ground-motion noise dataset is adopted to compare the Huber and
L2 norms (Fig. 9b). Here we use the smooth velocity model in Fig. 2¢ as the
initial model to implement this FWI process. The inversion results of the
two norms are shown in Fig. 13. We can find that the Huber and L2-norm
can both recover the Overthrust velocity model, but the structures and
features of the Huber norm are reconstructed more properly. We show the
velocity profiles of the true, initial, and inverted velocities in Fig. 14. From
this we can see that the inversion result of L2 norm matches worse
(indicated by arrows) than Huber norm. Fig. 15 shows the normalized rms
error of the velocity model through the inversion. From this figure, we can
see that Huber norm provide better FWI result even though it needs more
iteration number.
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a) Distance(km)

0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 (km/s)

b) Distance(km)
0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 (km/s)

Fig. 13. Inverted velocity models obtained from data contaminated strong ground-motion
noise by using a) Huber norm and b) L2 norm. Smooth velocity model in Fig. 2b is used
as initial model.

a) Velocity(km/s) b) Velocity(km/s) c) Velocity(km/s)
02.0 3.0 4.0 5.0 6.0 2.0 3.0 40 5.0 6.0 2.0 3.0 40 50 6.0
= T — T 0 — . ——r 0 - — —
—Real
0.2 2 5 — Initial
0. 02 —Huber
—L2
0.4+ 0.4 0.4
0.6 0.6 0.6
E —~ —~
g 0.8 E 0.8 5 0.8
Z L £
g 1.0 & 1.0 1.0
a a a
1.2+ 1.2 1.2
1.4 1.4 1.4
1.6 1.6 1.6
1.8 1.8 1.8

Fig.14 Velocity profiles at horizontal positions of a) 2.4, b) 3.6 and c) 6.0 km. Blue
represents the true model (Fig. 2a), black is the initial model (Fig. 2b), green is the model
inverted using the Huber norm (Fig. 13a), and red is the model inverted using the L2
norm (Fig. 13b).
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Fig. 15. Normalized rms errors of the FWI inverted model using Huber and L2.

As expected, the above examples presented here further indicate that
the Huber norm effectively suppresses non-Gaussian noise in the inversion
process. Huber norm can provide more reliable results than the L.2 norm that
can provide reliable results in the presence of Gaussian noise.

CONCLUSIONS

FWI starts from an initial model, then calculates the search direction
and step-length, and updates the target velocity model iteratively by
minimizing the misfit function. In this inversion process, step-length affects
the convergence quality and computational cost, misfit function decides the
tolerance of noise. Apparently, the two key factors both have important
influences for the successful inversion.

Exact line-search method - ASLM, we propose in this paper for the
Huber norm, can improve the computational efficiency while maintain the
inversion accuracy. From the noise-free data examples, we demonstrate that
ASLM performs better than PFSM-3 in Huber norm in terms of
computational cost. The proposed method is also tested on synthetic data
contaminated with outlier noise. ASLM can obtain a high-resolution result
with less extra forward modeling than PFSM-3 in the presence of
non-Gaussian noise.

Huber norm combines the L2 norm when residuals are small and L1
norm when residuals are large, thus compromising the anti-noise ability of
L1 norm and the stability of L2 norm. When testing the sensitivity of FWI
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against data in the presence of non-Gaussian noise, the inversion results
obtained with the Huber norm are satisfactory, the robust Huber norm can
give rise to high-resolution images. However, FWI with the classic L2 norm
fails to invert the acceptable velocity models when the data contaminated by
non-Gaussian noise.
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