
JOURNAL OF SEISMIC EXPLORATION 30, 447-453 (2021)              447 
 
 
 
 
 

TWO FACTORS AFFECTING THE SPEED OF 
INTERPOLATION WITHIN RAY CELLS 
 
 
 
PETR BULANT 
 
Department of Geophysics, Faculty of Mathematics and Physics, Charles University, Ke 
Karlovu 3, 121 16 Praha 2, Czech Republic. bulant@seis.karlov.mff.cuni.cz 
 
(Received January 2, 2021; accepted June 25, 2021) 
 
 
ABSTRACT 
 
Bulant, P., 2021. Two factors affecting the speed of interpolation within ray cells. 
Journal of Seismic Exploration, 30: 447-453. 
 
 This short study is devoted to further investigation of the interpolation method by 
Bulant and Klimeš. The method was designed to cover the model volume by prismatic 
ray cells formed by six points on three rays forming the ray tube, but enabled also the 
interpolation within degenerate ray cells formed by five or four points on the rays. Some 
researchers including consortium members were curious about the numerical efficiency 
of the proposed algorithm based on prismatic ray cells. In the first part of this study we 
thus compare the CPU time requirements of the interpolation within prismatic cells and 
within tetrahedral ray cells, and we conclude that computational time is not a criterion, 
according which one of the two methods is preferable in general. Then the method by 
Bulant and Klimeš offers bilinear interpolation scheme, and more precise bicubic 
interpolation scheme. In the second part of this short study we answer the question 
whether the bicubic interpolation is time consuming or not, and we conclude that this is 
not the case, and that it should be used whenever possible as it offers much higher 
accuracy compared to bilinear interpolation. 
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INTRODUCTION 
 
 The method of calculating of a set of seismic rays from given source 
under given initial conditions is called initial-value ray tracing (Červený et 
al., 1988). Once the set of rays is calculated, the traveltime, amplitudes, and 
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other quantities are known in the points stored along the rays. If we wish to 
know these quantities in other points of the model volume, we need to 
interpolate between the rays. 
 

Several interpolation methods based on decomposition of the model 
volume into ray tubes, their further decomposition into the ray cells, and on 
further interpolation within individual ray cells were introduced. In the 
controlled initial–value ray tracing (Bulant, 1999), the model volume is 
decomposed into ray tubes formed by three rays, and each ray cell 
corresponds to the space in the ray tube limited by two planes which 
approximate wave fronts or structural interfaces. Simple bilinear scheme 
may then be used to interpolate the quantities inside the ray cell from their 
values stored at the vertices of the ray cell. If the partial derivatives are 
known in addition to the functional values at the vertices of the ray cell, the 
bicubic interpolation scheme may be used to increase the accuracy of the 
interpolation (Bulant and Klimeš, 1999). 

 
The above-mentioned method is thus based on decomposition of ray 

tubes into prismatic ray cells, i.e., the cells formed by six points on three 
rays. If the rays interact with structural interfaces, it is sometimes not 
possible to create such cells, and one to several degenerate cells, which are 
formed by five or four points, must be generated. As was shown in Bulant 
and Klimeš (1999), computation of local coordinates within standard 
prismatic cells formed by six points leads to the solution of a cubic 
equation, while within degenerate cells formed by five points it leads to a 
quadratic equation, and finally within cells formed by four points local 
coordinates may be computed by solving a linear equation. As the solution 
of cubic equation is more time-consuming than the solution of linear 
equation, it might be interesting to divide ray tubes into ray cells formed by 
four points (tetrahedra) and gain from the simplification of the equations. In 
the first part of this paper we discuss this possibility and compare the 
required computational time needed for the interpolation within the 
prismatic ray cells and within the tetrahedral cells. 

 
The accuracy of the bicubic interpolation scheme and its comparison 

with the bilinear scheme was studied by Bulant and Klimeš (1999). It was 
shown that the accuracy of the bicubic scheme is much higher than that of 
the bilinear scheme. On the other hand, it is clear that the bicubic scheme 
will require more computational time. In the second part of this paper, we 
compare the two interpolation schemes with respect to the required 
computational time in order to find out whether the bicubic interpolation is 
time consuming or not. 
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COMPARISON OF THE SPEED OF INTERPOLATION WITHIN 
PRISMATIC VERSUS TETRAHEDRAL RAY CELLS 
 
 The method for interpolation of ray-theory travel times in nodes of 

3D grids presented by Bulant and Klimeš (1999) is based on three 
successive steps. Those are decomposition of ray tubes into ray cells, 
determination of the target gridpoints located within individual cells and 
calculation of their local coordinates, and the interpolation of traveltime to 
the determined gridpoints. As was explained in Introduction, computation of 
local coordinates within standard prismatic cells formed by six points on the 
rays leads to the solution of a cubic equation, while within degenerate cells 
formed by four points local coordinates may be computed by solving a 
linear equation. It might thus be interesting to divide ray tubes into 
tetrahedral ray cells and gain from the simplification of the equations. This 
may be done very easy by splitting each cell with five or six vertices into 
two or three tetrahedra, see Fig. 1. The sides of tetrahedra for two 
neighbouring ray tubes must coincide. This condition is satisfied, e.g., when 
we create first tetrahedron from the bottom of the ray cell along the ray with 
the highest index, and the third tetrahedron from the top of the ray cell along 
the ray with the lowest index from the indices of the three rays forming the 
original prismatic cell.  
 
 
 

 
 
 
Fig. 1. Prismatic ray cell decomposed into three tetrahedral ray cells. 
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Due to the simplification of the equations for local coordinates we 
could expect, that the interpolation within tetrahedra will be faster.  

 
On the other hand, we know that all the receivers situated inside the 

smallest box containing the whole ray cell enter into the computation of the 
local coordinates. The above mentioned boxes are about the same for all the 
three tetrahedra and for the original prismatic ray cell containing the 
tetrahedra. Thus, if we use tetrahedra, we will have to solve the equations 
for local coordinates for about three times more points of the target grid than 
in the case of prismatic cells. This will slow down the tetrahedra 
computation more in case of irregular (e.g., long and thin) ray cell, and less 
in case of regular cell, when more of the receivers from the above 
mentioned box are located within the cell. 

 
Moreover, we know that special care must be taken of the receivers 

located at the sides of ray cells. The use of tetrahedra means also increased 
number of sides of the cells and thus more receivers located at the sides. 

 
As the final effect of the use of tetrahedra instead of prismatic cells is 

not clear, we decided to compare the methods numerically. We took the 
code for interpolation within prismatic cells, changed the decomposition of 
ray tubes into tetrahedra instead of former decomposition into prismatic 
cells, and removed all operations connected with quadratic and cubic 
equations for computation of local coordinates within prismatic ray cells. 
The code for final interpolation of travel times and other quantities in 
tetrahedra remained the same as in prismatic cells, the interpolation is thus 
again trilinear, but with two pairs of coinciding points. The results of the 
interpolation are thus within numerical errors the same for both kinds of ray 
cells. Then we tested both the methods in model with lenticular inclusion 
and in model “98” of the package DATA (Bucha and Bulant, 2019). 

 
The computational time of interpolation in model 98 was 8 minutes 

34 seconds for tetrahedra method and 6 minutes 11 seconds for prismatic 
cells method. 

 
The computational time in model with lenticular inclusion was 1 

minute 52 seconds for tetrahedra and 2 minutes 36 seconds for prismatic 
cells. 

  
In the next numerical test carried out again in the model with 

lenticular inclusion we tested the influence of the shape of ray cells on the 
computational time. The length of the cells was managed by parameter 
which describes the time interval for storing points along the rays. Note that 
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typical velocity in the model is 5 km/s. The width of the cells was 
influenced by parameter which describes the maximum width of the cells in 
the ray-tube metric. Three computations were realized, see Table 1. 
 
 
Table 1. Computational times in model with lenticular inclusion in dependence on the 
shape of the ray cells. We can see that the computational times for long and narrow cells 
(first line) and for short and wide cells (third line) are longer in comparisson with 
optimal ray cells (second line). 
 

Length of the 
cells: 

Maximum width 
of the cells: 

Computational 
time for 

prismatic cells 
method: 

Computational 
time for 

tetrahedra cells 
method: 

1.000 sec 10. km 156 sec 112 sec 
0.175 sec 20. km 105 sec 101 sec 
0.084 sec 40. km 122 sec 139 sec 

 
 
We can see that the interpolation within tetrahedral cells may be 

sometimes slower and sometimes faster than the interpolation within 
prismatic cells. The computational time is mostly affected by the shape of 
the ray cells. 
 
 
COMPARISON OF THE SPEED OF BICUBIC INTERPOLATION 
VERSUS BILINEAR INTERPOLATION 
 
 As we already mentioned, the method by Bulant and Klimeš (1999) is 
based on three successive steps: the decomposition of ray tubes into ray 
cells, the determination of the gridpoints located within individual cells, and 
the interpolation to the determined gridpoints. As the partial derivatives of 
travel times are known at the vertices of the ray cell, two interpolation 
schemes may be used for the interpolation of traveltimes. Those are the 
bilinear interpolation scheme and the bicubic interpolation scheme. 
  

When we look at the equations for the determination of the gridpoints 
located within individual ray cells (Bulant and Klimeš, 1999, Chapter 3), 
and at the equations for the interpolation (Bulant and Klimeš, 1999, Chapter 
4), the interpolation does not seem to require many numerical operations 
compared to the determination. Moreover, the determination must be done 
for more gridpoints than the interpolation, and some additional 
computational time is also required by the decomposition of ray tubes into 
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ray cells. We could thus assume that the bicubic interpolation will not 
influence the computational time significantly. 

 
To prove these considerations, we have measured the computational 

time required for the two interpolation schemes. We used an example of the 
interpolation in model ’98’, described by Bulant and Klimeš (1998). The 
results are summarized in Table 2. 

 
 

Table 2. Computational times in model ’98’ for bicubic and bilinear interpolation 
schemes. The computational time for bicubic interpolation is slighly longer, but the 
difference is negligible compared to the computational time of the whole code. 
 
Kind of interpolation scheme: Bicubic  Bilinear 
Execution time to run the whole code: 4 min 

33.98 s 
4 min 
33.79 s 

Execution time of the determination of 
gridpoints located within the cells: 

2 min 
42.04 s 

2 min 
41.85 s 

Execution time of the interpolation: 3.87 s 3.68 s 
 
 

We can see that the difference between the computational time 
required for the bicubic interpolation and the computational time required 
for the bilinear interpolation is negligible with respect to the computational 
time required to run the whole code. This conclusion has been numerically 
verified only for the presented computation, but as it is in accordance with 
our theoretical estimates, we believe that it holds in general. 
 
 
CONCLUSIONS 
 
 The bicubic interpolation scheme used in Bulant and Klimeš (1999) is 
not time consuming in comparison with the bilinear interpolation scheme. 
As it is much more accurate (Bulant and Klimeš, 1999, Fig. 8), it should be 
used whenever possible. 
  

Using the tetrahedral ray cells may be sometimes slower and 
sometimes faster than using the prismatic ray cells. Computational time is 
not a criterion, according which one of the two methods is preferable in 
general. It is much more affected by the shape of the ray cells. 
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