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ABSTRACT 
 
Bao, Y., Chen,  J., Liu, X.B. and Zhao, Z.C., 2001. Joint PP and PS anisotropic AVO 
inversion using the exact Zoeppritz equations. Journal of Seismic Exploration, 30: 529-
544. 
 
 With increasing complexity of the geological structure, the conventional amplitude 
variation with offset (AVO) inversion methods based on the approximate Zoeppritz 
equations are not suitable for the current direct hydrocarbon detection. The linearized 
approximations of the Zoeppritz equations work well under the conditions of weak 
contrast boundary and small incident angle, which not only restrict the scope of 
application but also reduce the accuracy of the inversion results. Furthermore, since the 
seismic anisotropy has been found in many regions of the Earth’s subsurface, the 
assumption of isotropic elastic media cannot exactly describe the subsurface properties. 
Therefore, we develop an anisotropic AVO inversion method by replacing the 
approximate isotropic Zoeppritz equations with the exact isotropic Zoeppritz equations, 
and the Rüger’s approximations are still used in the anisotropic perturbation part. In 
addition, we add the PS seismic data as a new constrained condition to improve the 
inversion results. In this study, we also obtain the analytical expressions of the 
derivatives of reflection coefficients with respect to unknown parameters (e.g., P- and S-
wave velocities, density and Thomsen parameters: ε and δ). Given more parameters are 
required in anisotropic AVO inversion, the instability of the solution becomes a critical 
problem. We conduct the Marquardt method to enhance the stability during the inversion 
process.  In this paper, we use a synthetic seismic data with	ideal and noisy situations to 
verify the performance of the proposed AVO inversion algorithm. The final inversion 
results indicate that our new method works well to obtain the elastic parameters (density, 
P- and S-wave velocities) and Thomsen parameters.  
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INTRODUCTION 
 
 Seismic data can provide useful information for the hydrocarbon 
detection, especially it can generate the image of subsurface structure (Liu et 
al., 2012; Sun and Zhao, 2006; Russell, 2014). The amplitude variations 
with incidence angle (AVA) or amplitude variations with offset (AVO) 
inversion is commonly used to invert the reservoir properties effectively by 
utilizing seismic data (Buland and Omre, 2003; Hampson, 1991; Lu et al., 
2018; Rutherford and Williams, 1989). 
  
 The fundament of the AVO inversion is the Zoeppritz equations that can 
relate the incidence angle with the seismic reflectivity. The Zoeppritz 
equations are a set of nonlinear functions with reference to the incidence 
angle and elastic parameters (P-wave velocity, S-wave velocity and density) 
that reveal the partitioning of seismic wave energy at a boundary between 
two different rock formations. Because the analytical solution of the exact 
Zoeppritz equations is difficult to obtain, the linearized approximate 
expressions of the Zoeppritz equations (Aki and Richards, 1980; Shuey, 
1985) have been developed to calculate the seismic wave reflection and 
refraction coefficients easily in the conventional AVO inversion methods 
(Bortfeld, 1961; Li et al., 2005; Lu et al., 2018). However, these 
approximations are based on the assumptions of weak contrast at the 
interface and a small incidence angle. It is too hard to satisfy this assumption 
due to the complexity of geological structure. Thus, the seismic wave 
reflection and refraction coefficients that calculated by the approximate 
Zoeppritz equations will have tiny errors. After considerable iterations in the 
inversion process, these tiny errors will accumulate and lead to large 
deviations in the final inversion results. 
 
 Furthermore, as Thomsen (1986) indicates, seismic anisotropy widely 
exists in the earth’s crust that can generate nonnegligible effect to seismic 
wavefields. Especially, the vertical transverse isotropy (VTI) medium is 
common in the reservoir rock (Backus, 1962; Carcione et al., 1991; Sidler 
and Holliger, 2010; Thomsen, 1986). However, the conventional AVO 
inversion methods focus on isotropic media, and may lead to incorrect 
inversion results (Castagna and Backus, 1993; Liu et al., 2012). Therefore, 
the presence of VTI can dramatically overcome the shortcomings of the 
conventional isotropic AVO inversion methods (Kim et al., 1993; Rüger, 
1997; Wright, 1987). 
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 Thomsen (1986) introduced the Thomsen parameters (ε and δ) to 
describe VTI media effectively, which means more parameters are required 
to calculate by the anisotropic AVO inversion. In the inversion processing, 
more parameters will lead to local minimum problem occurring more 
frequently (Lee et al., 2010; Lu et al., 2018). Considerable studies have 
focused on the Zoeppritz equations for transversely isotropic media. Daley 
and Hron (1977) proposed the exact formulas of the Zoeppritz equations for 
the transversely isotropic media. Banik (1987) introduced Thomsen 
parameters in the expression of P-wave reflection coefficient. While those 
equations are too intricate to use in an anisotropic AVO inversion. Different 
from previous researches, Rüger’s (2002) present linearized PP and PS-wave 
reflection coefficient expressions for the VTI medium (known as Rüger 
approximations) which are much easier to use in anisotropic AVO inversion 
and can provide precise results (Booth et al., 2016; Lu et al., 2018). 
  

In this paper, we develop a new Anisotropic AVO inversion method. 
We first obtain the isotropic reflection coefficients calculated by the exact 
isotropic Zoeppritz equations, then get the analytical solutions of the 
derivatives of reflection coefficients with respect to unknown parameters 
(e.g., P- and S-wave velocities, density and Thomsen parameters) (Liu et al., 
2012; Bao et al., 2019). Due to Rüger’s linearized formulas clearly describe 
the isotropic and anisotropic effects on reflection coefficients, we employ 
the anisotropic part of Rüger approximations as the anisotropic perturbation 
term, and calculate the derivatives of anisotropic reflection coefficients with 
respect to unknown parameters in the anisotropic media. Moreover, adding 
the PS-wave reflection coefficients to the conventional PP-wave AVO 
inversion can effectively reduce	 multiple solutions and solve the local 
minimum problem (Auger et al., 2003; Veire and Landrø, 2006). To avoid 
the unstable solution, we also adopt the Marquardt method (Marquardt, 
1963). We use a truncated Taylor series expansion regarding the model 
unknown parameters to generate the updating formula for the inversion, and 
apply the least-squares method to establish the objective function. Finally, 
we test our proposed method with the synthetic seismic data and compare 
the AVO inversion results (P- and S-wave velocities, density and Thomsen 
parameters) with the conventional method (Aki and Richards’ (1980) 
approximation). The model study indicates that our proposed method can 
feasible and precisely invert the rock properties in anisotropic media. 
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THEORY 
 
Reflection coefficients and gradients 
  
 We add an anisotropic perturbation term on the isotropic term to 
calculate the reflection coefficients in the VTI medium. It can be expressed 
as: 
 
           ,iso anisR R R= +                                                                                (1) 
 
where Riso and Ranis denote the isotropic and anisotropic parts, respectively. 
  
 The isotropic part of the reflection coefficients is generated by the exact 
Zoeppritz equations. It is written as: 
 
             

1 ,isoR A B−=                (2) 
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B α α β η α= − −                                               (4) 

           ( ) .Tiso PP PS PP PSR R R T T=                                                                      (5) 

 In eqs. (3) and (4), α and β indicate the incidence angles of the P- and S-
waves, respectively. α’ and β’ denote refraction angles of P- and S-waves, 
respectively. η1=Vs1/Vp1, η2=Vp2/Vp1, η3=Vs2/Vp1 and ρ21=ρ2/ρ1. VP and VS are 
the P-and S-wave velocities, respectively, ρ is the density of the medium. 
We use subscripts “1” and “2” to represent the upper and lower layers, 
respectively. 
 
 For the anisotropic part of eq. (1), we apply the Rüger’s reflection 
coefficient equations (Rüger, 2002) to calculate the PP and PS reflection 
coefficients, which are written as: 
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Here, ε and δ are known as Thomsen parameters; ε describes the fractional 
difference between the vertical and horizontal P-wave velocities, and δ 
describes the variation of P-wave velocity with incidence angle in near-
vertical propagation. The VP and Vs are the vertical (symmetry-axis) 
velocities of the P- and S-waves, respectively: 
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Based on eq. (1), the gradients of reflection coefficients can be written as:                                       

=iso anis iso anis anis

iso iso anis

R R R R R R
m m m m m m
∂ ∂ ∂ ∂ ∂ ∂

= + + +
∂ ∂ ∂ ∂ ∂ ∂       ,                             (8) 

where the model parameter vector m can also be divided into isotropic and 
anisotropic parts, respectively. The isotropic part includes the elastic 
parameters: P- and S-wave velocities, the medium density, and the 
anisotropic part includes Thomsen parameters: ε and δ. Since Thomsen 
parameters are only related to the anisotropic term, we can ignore the partial 
derivatives of the isotropic term with respect to the Thomsen parameters. 
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 Based on eq. (2), we can obtain the partial derivatives of the reflection 
coefficients by calculating the partial derivative equations of matrices A and 
B. The gradients of isotropic part with respect to the elastic parameters can 
be written as: 
 

           
1 1 .iso

iso
iso iso iso

R A BA R A
m m m

− −∂ ∂ ∂
= − +

∂ ∂ ∂                                                               (9) 

 From eqs. (8) and (9), we can obtain the gradients of reflection 
coefficients 
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Anisotropic AVO inversion 
 
 We first establish the joint PP and PS objective function F, which can 
be written as: 
 

          
2 2( ) (1 ) ,PP PP PS PSF m w R D w R D= − + − −                                  (11) 

 
where m = (VP, VS, ρ, ε, δ). RPP and RPS respectively are the synthetic PP and 
PS-wave reflection coefficients of the given model parameter vector m, 
which are generated by eq. (1). DPP and DPS are the real PP and PS wave 
reflection coefficients, respectively. We use the weight factor w to qualify 
the PP and PS data. w ranges from 0 to 1. The higher the quality of the data, 
the larger the weight. If both the PP and PS data have the same quality, w is 
0.5. w will be 1 if only PP data are applied for the inversion. 
 
 Then, we use the truncated Taylor series expansion for RPP and RPS  to 
build the updating formula of the inversion, which is written as: 
 
        / / /( ) ( ) ( ) ,PP S k PP S k PP S kR m m R m R m m+ Δ ≈ +∇ Δ                              (12) 
 
where mk is the parameter vector for the k-th iteration, and 

( , , , , )P Sm V V ρ ε δΔ = Δ Δ Δ Δ Δ  is the update for the current parameter 
vector. 
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 Let / / ( )PP S PP S kG R m=∇ , we substitute eq. (12) into eq. (11): 

 
2 2( ) ( ) (1 ) ( ) .PP PP PP PS PS PSF m w R G m D w R G m D= + Δ − + − + Δ −       (13) 

 
According to the least-squares method, eq. (13) can be written as: 

                  
2 2( ) ( ) (1 ) ( ) 0.T T
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F m w R D G G m w R D G G m
m

∂
= − + Δ + − − + Δ =

∂Δ                            

              (14) 

Therefore, the update parameter vector mΔ  can be derived as:                

1[ (1 ) ] [ ( ) (1 ) ( )].T T T T
PP PP PS PS PP PP PP PS PS PSm wG G w G G wG R D w G R D−Δ = + − ⋅ − + − −                             

               (15) 

We update our model iteratively until the update vector reaches a 
satisfactory minimum. 

 
 While the solution of eq. (15) is unstable, because the singular matrix 
will appear in this equation occasionally. Here, we conduct the Marquardt 
(1963) method to avoid the instability during inversion. Eq. (15) becomes: 

               
1[ (1 ) + ] [ ( ) (1 ) ( )+ ]T T T T

PP PP PS PS PP PP PP PS PS PSm wG G w G G I wG R D w G R D Iξ ξ−Δ = + − ⋅ − + − − ,                 
               (16) 
 
where I is an identity matrix and ξ  denotes a real constant that depends on 
the precision requirement. 
 
 Since we carry out the inversion with multiple incidence angles, we let 
iθ  indicates the i-th incidence angle, and nR  indicates the reflection 

coefficients of the n-th layer. The gradients of reflection coefficients G can 
be given as 
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 The zero-matrix elements are neglected. 
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 To improve the inversion accuracy, we introduce a mean shift method to 
constrain the inversion results. After several iterations, we can generate an 
elastic parameter model that is close to the prior model by extrapolating 
from the well model. We calculate the mean values of each model, if the 
ratio between the mean values is large, then this ratio is used to scale the 
inverse model to improve its proximity to the prior model. 
  
 We also apply the PS to PP time-alignment processing technique in this 
study. Due to the use of a joint objective function in the AVO inversion, we 
should ensure the PS time is aligned with PP time by compressing PS time. 
To do this, the PS events need to match to the PP events from the same 
geologic strata with the help of well and synthetic data. 
 
 
NUMERICAL EXAMPLES 
  
 In order to validate our method, we carry out two numerical examples. 
For both examples (with and without noises), we use a five-layer 1D model 
as the true model (shown in Table 1). The contrast of rock properties at each 
interface is high. We calculate the PP and PS reflection coefficients based on 
eq. (1) with the true model. Then, we calculate the synthetic PP and PS 
reflection coefficients with an initial model. The incidence angles are from 
50 to 400 with the interval of 50, the sample rate is 1ms, and no multiples are 
considered in the tests. 
 
 
Table 1. Rock properties of the five-layer model. 
 
 

Thickness(m) VP(m/s) VS(m/s) ρ(g/cm3) ε δ 

100 1980 808 2.01 0.25 0.2 

80 2200 1260 2.2 0.21 0.13 

60 2440 1340 2.31 0.13 0.19 

60 2660 1480 2.4 0.3 0.24 

150 1980 808 2.01 0.25 0.2 
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Example 1 
 
We carry out the forward calculations of PP and PS reflection 

coefficients without noises. Since both PP and PS data are high quality, we 
set w is 0.5. The synthetic PP and PS seismograms are shown in Fig. 1, 
which are generated through the convolution of the reflection coefficients 
and the Ricker wavelet with the dominant frequency of 30 Hz. We change 
the polarity of PS-wave to match with PP-wave to ensure the PS reflection 
time correlates with PP reflection time. 

 
Two different inversion methods are applied to invert P- and S-wave 

velocities, density and Thomsen anisotropy parameters in this test. One is 
based on the exact PP and PS reflection coefficients, and another is based on 
PP and PS reflection coefficients calculated by the Aki and Richards’ 
approximation (Aki and Richards, 1980). 

 

 

Fig. 1. Synthetic PP and PS seismograms in PP time domain; (a) PP-wave without noise, 
(b) PS-wave without noise. To match the PP-wave, the PS-wave data are compressed to 
PP time, and the polarity is reversed. 
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 After several iterations, the inversion results are shown from Fig. 2 to 
Fig. 6 for P- and S-wave velocities, density, as well as Thomsen parameters 
ε and δ, respectively. As those figures shown, although there are strong 
contrasts in the true model, our new method based on the exact isotropic 
Zoeppritz equations can provide better results (velocities, density and 
Thomsen anisotropy parameters) than the Aki and Richards’ approximation 
method. In addition, on can observe that the inverted P- and S-wave 
velocities and Thomsen parameters match the true model better than the 
inverted density because density shows more sensitivity to amplitudes (Lines, 
1998; Du and Yan, 2013). 

 
 

 
 

Fig. 2. Inversion result for P-wave velocity. The solid black line is the true model, blue 
dash line is the initial model. The solid red line is the inversion result by our proposed 
method and solid green line is the result using Aki and Richards’ approximation. 
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Fig. 3. Inversion result for S-wave velocity. The solid black line is the true model, blue 
dash line is the initial model. The solid red line is the inversion result by our proposed 
method and solid green line is the result using Aki and Richards’ approximation. 

 

Fig. 4. Inversion result for density. The solid black line is the true model, blue dash line is 
the initial model. The solid red line is the inversion result by our proposed method and 
solid green line is the result using Aki and Richards’ approximation. 
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Fig. 5. Inversion result for Thomsen parameter ε. The solid black line is the true model, 
blue dash line is the initial model. The solid red line is the inversion result by our 
proposed method. 

 

Fig. 6. Inversion result for Thomsen parameter δ. The solid black line is the true model, 
blue dash line is the initial model. The solid red line is the inversion result by our 
proposed method. 
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Example 2 
 
In this study, we take into account the effects of noises. The accuracy of 

inversion is highly dependent upon the noise level. Fig. 7 shows the PP and 
PS wave signals with different random noise levels (15% and 5%). Based on 
the different noise levels, we give them different weights w. 

 

 

Fig. 7. Synthetic PP and PS seismograms in PP time domain; (2) PP-wave data with 15% 
random noise, (b) PS-wave data with 5% random noise. To match the PP-wave, the PS-
wave data are compressed to PP time, and the polarity is reversed. 

 
 

 Fig. 8 shows the inversion results with only apply PP data. Obviously, 
the noise has a strong impact for the final model, which is not very close to 
the true model. Then, we combine PP and PS data to carry out the AVO 
inversion. Due to the low noise level of PS data, we give PS data with a 
larger weight in the inversion. The results are shown in Fig. 9. One can 
observe that the final model is much closer to the true model than the results 
shown Fig. 8. 
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Fig. 8. Inversion results with only PP data: (a) P-wave velocity, (b) S-wave velocity. The 
solid black line is the true model, blue dash line is the initial model. The solid red line is 
the inversion result. 
 
 
CONCLUSIONS 

 
 We successfully implemented the anisotropic AVO inversion after 

obtaining seismic reflection coefficients by the exact Zoeppritz equations 
and Rüger’s expression in anisotropic media. The synthetic tests verified that 
our proposed method can deal with high-contrast interfaces of geological 
models, and provide more accurate inversion results (velocities, density and 
Thomsen anisotropy parameters) than the Aki and Richards’ approximation. 
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Fig. 9. Inversion results with the joint PP and PS data: (a) P-wave velocity, (b) S-wave 
velocity. The solid black line is the true model, blue dash line is the initial model. The 
solid red line is the inversion result. 
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