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ABSTRACT 
 
Jin, K., Huang, J.P., Zou, Q., Wang, Z., Tong, S., Liu, B. and Hu, Z., 2021. Optimization 
of staggered grid finite-difference coefficients based on conjugate gradient method. 
Journal of Seismic Exploration, 31: 33-52. 
 

The implementation of difference coefficients optimization strategy can effectively 
suppress numerical dispersion and improve the modeling accuracy.	 The conventional 
difference coefficients calculation method based on Taylor-series Expansion exists 
serious numerical dispersion.	 In this paper, we derive a new dispersion error function 
from the dispersion relation, and the optimal difference coefficients are obtained 
iteratively by using the conjugate gradient method, thus a staggered-grid difference 
coefficients optimization method based on the conjugate gradient is developed.	 We 
compare dispersion curves, snapshots and single shot records using low-velocity model, 
high-velocity model and Marmousi model, the results show that the new method can 
effectively reduce the numerical dispersion compared with the difference coefficients of 
the conventional Taylor-series Expansion method.	 The 8th-order optimized difference 
operators can achieve the modeling precision of 12th-order Taylor-series Expansion 
difference operators, which can effectively save calculation time and internal storage.	
The optimization method performs well for both simple model and complex model 
forward modeling. 

 
KEY WORDS: finite-difference, staggered grid, numerical dispersion,	 	
  difference coefficients,	conjugate gradient. 
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INTRODUCTION 

 
The Finite-Difference (FD) method is widely used in seismic wave 

propagation numerical simulations for its easy implementation, fast 
computing speed and ease of extending to different complex media 
(Alterman and Karal, 1968; Igel, 1995; Virieux et al., 2011). The modeling 
accuracy of FD methods depends not only on the grid subdivision method 
and difference order, but also on the calculation of difference coefficients. 
Excessively fine grid subdivision and high-order difference will 
significantly increase the amount of calculation (Ren et al., 2012). 
Difference coefficients optimization can effectively suppress the numerical 
dispersion without increasing the amount of computing and improve the 
modeling accuracy. The conventional difference coefficients are obtained by 
Taylor-series Expansion, and the difference coefficients calculated in this 
way lead to high accuracy over a small wavenumber range. However, when 
the seismic wave frequency band is wider, strong numerical dispersion will 
appear, which is difficult to meet the requirements of numerical modeling 
accuracy (Liu, 2013; Yong et al., 2017). For this reason, the optimization 
method of difference coefficients has always been the focus of research. 

 
Some scholars have proposed various optimization algorithms to get 

optimal FD coefficients. Etgen (2007) suggested using the phase velocity 
related to dispersion error to optimize the difference coefficients. Liu and 
Sen (2011) combined the time-space domain dispersion-relation-based FD 
scheme and the truncated FD scheme to obtain optimized spatial FD 
coefficients. Zhang and Yao (2013) proposed to calculate the optimal 
difference coefficients by simulated annealing method. Based on the least 
square theory, Liu (2013) obtained the FD coefficients of the second-order 
spatial derivative of the global optimization. Yang et al. (2014) used the 
dispersion relation and the least square method to derive the staggered-grid 
finite-difference (SFD) coefficients of arbitrary even-order precision of the 
first-order spatial derivative. Ren and Liu (2015) used the least squares 
algorithm to derive the optimal SFD coefficients by minimizing the relative 
error of time-space-domain dispersion relations over a given frequency 
range, and carried out numerical simulation of acoustic wave and elastic 
wave equations. Yang et al. (2017) obtained the optimized staggered-grid 
difference coefficients by using the minimax approximation method with a 
Remez algorithm. In particular, Yong et al. (2017) on the basis of the 
Equivalent Staggered Grid, derived plane wave solutions of displacement 
components in wavenumber domain from 2D elastic wave equations and 
established three time–space domain dispersion relations. Then applied 
Newton method to obtain optimal coefficients by minimizing the relative 
error between time dispersion and spatial dispersion.  

 
Another method to optimize the difference coefficients is to introduce 

an appropriate window function. Fornber (1987) proved that the 
pseudo-spectral method is equivalent to the higher-order approximation of 
the FD method, and the difference coefficients can be obtained by 
truncating the spatial convolution sequence of the pseudo-spectral method 
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through the time-domain window function. Zhou and Greenhalgh (1992) 

obtained the corresponding difference operators by using generalized 
weighted Hanning window truncation. Igel et al. (1995) deduced new FD 
operators using Gaussian window truncation. Chu and Stoffa (2012) 
calculated the optimal difference coefficients by using the scaled binomial 
window. Ren et al. (2018) converted the calculation of difference 
coefficients based on window function into the least squares problem and 
proposed the difference coefficients of window function optimized by least 
squares.  

 
Due to the complexity of the media and the inherent problems of the 

finite-difference method, the above methods have some problems in the 
range of application and modeling accuracy and cannot completely 
eliminate the numerical dispersion. Therefore, it is still a hot topic to find an 
effective optimization method of difference coefficients to reduce numerical 
dispersion. Compared with the regular-grid FD method, under the same 
discrete condition, the SFD method has higher accuracy and better stability 
(Igel et al., 1995; Ren and Liu, 2015; Huang et al., 2015). For the numerical 
dispersion problem inherent in the finite-difference method, staggered-grid 
methods have greater precision and stability than conventional standard-grid 
FD methods (Yong et al., 2017). In this paper, based on the staggered-grid 
discrete scheme, we first construct an error function from the dispersion 
relation. Then we introduce the conjugate gradient method to obtain the 
optimized difference coefficients, while the initial value is selected from the 
coefficients of Taylor-series Expansion method. Finally, by means of 
dispersion analysis and numerical simulation, the effectiveness and certain 
advantages of conjugate gradient optimization method in reducing 
numerical dispersion are verified. 

 
 
 
ACQUISITION OF DIFFERENCE COEFFICIENTS 
 
Staggered-grid discrete format 

 
Staggered-grid was initially proposed by Yee (1966), and Madariaga 

(1976) proposed an FD method for staggered-grid of first-order 
velocity-stress elastic wave equation. Virieux (1984, 1986) also used this 
differential grid scheme when simulating SH and P-SV waves in isotropic 
media. Tong et al. (2019) proposed new elastic equations transformed from 
traditional elastic wave equations for converted S-wave simulation 
combined with an SFD. For regular-grid, the value of the whole grid point is 
used to approximate the partial derivative. While staggered-grid modeling 
uses the value of the half grid point as shown in Fig. 1. This difference 
scheme can improve the local accuracy of numerical modeling and 
accelerate the convergence speed. For solving the first-order velocity-stress 
acoustic wave equation, the precision of staggered-grid is higher than that of 
regular-grid. 
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Fig. 1. Schematic diagram of staggered-grid of two-dimensional isotropic media acoustic 
wave equation.  

 
 

The first-order velocity-stress equations describing 2D acoustic wave 
equation in heterogeneous isotropic media can be expressed as: 
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where ρ  is the density, u  is the normal stress, the velocities of particles 
are expressed in terms of xv  and zv , and the P-wave velocity is pv . 
 

The 2L-order FD of first-order spatial derivative under the staggered 
grid is defined as eq. (2). What should be noted is that we only developed 
the equations for the x-direction because of the z-direction is essentially 
identical. 
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where xΔ  represents the grid step, L is half of the spatial order, 
ma 1,2,3... )(m L= are the SFD coefficients. And i, j are coordinates of grid 

nodes in x- and z-directions respectively. Similarly, k is the time coordinate. 

Because the staggered grid uses the values of the half-grid points, the 

coordinates of the half-grid points are represented by 1 1,
2 2

i j+ + , and 1
2

k +  

respectively. For the convenience of writing, in the following derivation, we 

express u， xv  and zv  in the following form: take u  for example, if we 

express ( , , )u x z t  as ,
k
i jU , then ( , , )

2 2 2
x z tu x z tΔ Δ Δ
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Supposing the discrete value of stress u  is 1 2
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component zv  is , 1 2
k
i jQ + . According to eq. (2), the staggered-grid discrete 

format of eq. (1): 
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respectively, tΔ  is the time sampling interval.  For eq. (3),  the numerical 
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solution of eq. (1) can be obtained only by asking for the corresponding 
difference coefficients ma , so as to realize the numerical simulation of 
seismic waves in acoustic media. 

 
Therefore, the key to realize seismic wave numerical simulation by 

using SFD method is to obtain the corresponding difference coefficients. At 
the same time, the difference coefficients also affect the accuracy of seismic 
wave numerical simulation. The method of calculating the SFD coefficients 
is described below. 

 
 

Coefficients obtained by Taylor-series Expansion method 
 

The traditional difference coefficients are obtained by Taylor-series 

Expansion method. Suppose that the stress field ( )u x , and at least 2L+1 of 

its derivatives are continuous in the interval including 0x x= . The finite 

2L+1 order Taylor-series Expansion of ( )u x  near at 0x x=  with 0x x xΔ = −  

at 0
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Expanding the first term on the right side of eq. (5) to get:   
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Similarly, expanding the second term on the right side of eq. (5): 
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From the coefficients correspondence of 0( )mu x  on the left and right 
sides of eq. (5) being equal, the following system of equations can be 
obtained: 
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The Taylor-series Expansion staggered-grid finite-difference (TESFD) 

coefficients am can be estimated by solving eq. (8). The Taylor-series 
Expansion omits the higher order terms, which causes numerical dispersion. 
The precision will decrease rapidly with the increase of wavenumber. In this 
paper, conjugate gradient method is used to iterate the difference operators 
based on Taylor-series Expansion method, and the optimal solution can be 
obtained by convergence within the given error range. 

 
 

Coefficients optimization with conjugate gradient method 
 
The Fourier transform of eq. (2) is applied to obtain the expression of 

the first-order spatial derivative of staggered-grid in the Fourier domain: 
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where K is the horizontal wavenumber, and ma （ 1,2,3...m L= ）represent the 
coefficients of the staggered grid. 
 
 The error function is: 
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where / 2K xβ = Δ ， taking [0, / 2]β π∈ , selecting a certain wavenumber 
sampling interval, β  can be discretized into I equal parts, , 1,2,...,i i Iβ = . 
Therefore, eq. (10) is actually a system of linear equations composed of I 
equations, which can be written as: 
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  E Ax b= −   ,               (11) 
 
A is the L I×  real matrix related to β , x is the FD coefficient vectors: 

1 2( , ... ) , (1,1...1)T T
mx a a a b= = . E is the error vector, and the conjugate gradient 

method can be used to find an optimal value of x by iterative convergence, 
so as to minimize the relative dispersion error E.  
 

The iterative form of conjugate gradient method mathematically can be 
written as: 

 1k k k xx x pα+ = +   ,               (12) 

where kx  represents the k-th iteration value, kα  is the k-th search step size:

    
T
k k

k T
k k

p q
p Ap

α =   ,               (13) 

kq  is the residual vector of the k-th iteration, k kq b - Ax= , kp  is the search 
direction, and its calculation formula is as follows: 

  1
1 1
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k k

k k kT
k k

q qp q p
q q −
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= +   .             (14) 

 
In order to ensure the correctness of convergence direction, the 

staggered-grid difference operators based on Taylor-series Expansion 
method are selected as the initial value x0, and the convergence speed is also 
accelerated. In the first iteration of conjugate gradient method, taking 
0 0q b Ax= −  as residual vector. And q0 is taken as the initial search direction, 

namely 0 0p q= , thereout the step size could be calculated and the result of 
the first iteration could be obtained. When a certain error range or iteration 
number is limited, the optimal conjugate gradient staggered-grid 
finite-difference (CGSFD) coefficients can be obtained.  

 
Tables 1 and 2 list the SFD coefficients calculated by the Taylor-series 

Expansions method and the conjugate gradient method, respectively. 
 
 

Table 1. First derivative difference coefficients of TESFD method. 
 
 
Space 
order 
(2L) 

1a  2a  3a  4a  5a  6a   

L=2 1.1250000 -0.0416667     
L=3 1.1718750 -0.0651042 0.004688    
L=4 1.1962891 -0.0797526 0.0095703 -0.0006975   
L=5 1.2112427 -0.0897217 0.0138428 -0.0017657 0.0001187  
L=6 1.2213364 -0.0969315 0.0174477 -0.0029673 0.0003590 -0.0000218 
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Table 2. First derivative difference coefficients of CGSFD method. 
 

Space 
order 
(2L) 

1a  2a  3a  4a  5a  6a  

L=2 1.1407061 -0.0472992     
L=3 1.1948784 -0.0777345 0.0077875    
L=4 1.2206376 -0.0957788 0.0160881 -0.0020056   
L=5 1.2355203 -0.1074073 0.0229949 -0.0048984 0.0006875  
L=6 1.2444627 -0.1148663 0.0281136 -0.0076920 0.0018120 -0.000272 

 

 
 
Fig. 2. Flow chart of optimization of difference coefficients by conjugate gradient method. 
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DISPERSION ANALYSIS 
 

Numerical dispersion is an inherent shortcoming of the FD method. The 
error term produced when the differential equation is approximated by the 
difference equation makes the phase velocity change. As a result, the phase 
velocity is not equal to the group velocity, which results in numerical 
dispersion (Fei and Larner, 1995). The numerical dispersion is related to the 
precision of the FD method. In this section, the dispersion analysis of our 
method is implemented.  

 
The relative error function of first-order staggered-grid can be 

expressed as: 

    
1

1 1( ) sin[( ) ] /
2 2

L

m
m

E K a m K x K x
=

= − Δ Δ∑   ,  (15) 

 
where am represents the FD coefficients, K is the horizontal 
wavenumber, xΔ is the grid step, and L is half of the spatial operator length  
 

Taking advantage of eq. (15) and taking / 2K xΔ  as the independent 
variable, taking [0, / ]K xπ∈ Δ  can obtain the dispersion curve of TESFD 
method and CGSFD method, as shown in Fig. 3. 

 
Fig. 3. Dispersion error curve. 
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From Fig. 3, we can observe that: (1) With the increase of the 
wavenumber, dispersion curve gradually departure from 1, indicating that 
the numerical dispersion of the FD method generally increases with the 
increase of the wavenumber K. (2) The dispersion error of the two methods 
both decreases with the increase of the space order, which indicates that the 
increase of the space order can suppress the dispersion error. However, the 
increase of the space order will reduce the calculation efficiency. (3) 
Compared with TESFD method of the same space order (solid line), 
CGSFD method (dashed line) can effectively reduce the dispersion error, so 
as to suppress the numerical dispersion. (4) The dispersion curve of 
8th-order spatial difference CGSFD method (red dashed line) and the 
dispersion curve of 12th-order spatial difference TESFD method (green 
solid line) almost coincide, suggesting that the 8th-order CGSFD method 
can achieve the precision of the 12th-order TESFD method. Reducing the 
spatial order means reducing the calculation amount. The calculation time of 
350 ms Marmousi model finite-difference forward is 50.9 s and 70.5 s 
respectively, by using the 8th-order CGSFD method and the 12th-order 
TESFD method. The calculation time of the latter is 1.38 times of the 
former, suggesting that the proposed method requires less calculation time 
and higher calculation efficiency than the traditional Taylor-series 
Expansion method when the same precision is achieved. 

 
 

NUMERICAL MODELING ANALYSIS 
 
In order to verify the effectiveness of the difference coefficients 

obtained by the CGSFD method in reducing dispersion, the difference 
coefficients obtained by the TESFD method and the CGSFD method are 
used to simulate the wave field of the homogeneous isotropic model and the 
Marmousi model. 

 
 

Homogeneous medium 
 
To verify the correctness of the above dispersion analysis, the 

homogeneous medium is tested first, and the homogeneous medium with 
low velocity and high velocity is tested respectively. 

 
 

Low-velocity medium 
 
We first design a low velocity homogeneous model with the size of 

201 201× , time sampling interval is set 1t msΔ = , and the spacial sampling 
interval is set 10x z mΔ = Δ = , P-wave velocity of 2000 m/s and space-order 
of 10. The model equation is a first-order velocity-stress acoustic wave 
equation, as shown in eq. (1). The source signal is represented by a Ricker 
wavelet with a center frequency of 30 Hz and is located at the center of the 
model. The difference coefficients are calculated by TESFD method and 
CGSFD method respectively, and the simulation results are shown in Fig. 4. 
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               (a)                            (b) 
 

Fig. 4. Snapshots of the acoustic field at 450 ms of (a) TESFD method and (b) CGSFD 
method. 

 
 
 

Figs. 4(a) and 4(b) are the snapshots computed by the TESFD and 
CGSFD methods, respectively, at the moment of 450 ms. The four 
boundaries of the wave field snapshot shown in Fig. 4(a) all have obvious 
numerical dispersion (indicated by the red arrow), while the numerical 
dispersion at the corresponding positions in Fig. 4(b) is almost invisible. For 
further verification, we extract the slices from the snapshots in Fig. 4 for 
comparative analysis. The reference solution is obtained by using the 
traditional high-order FD scheme L = 10, and the result is shown in Fig. 5. 

 
As can be seen from Fig. 5, the coincidence degree between 10th-order 

CGSFD method and reference trace is higher than that of the 10th 
traditional TESFD method. Indicating that the CGSFD method can 
effectively suppress the numerical dispersion compared with the traditional 
method, which is consistent with the results of dispersion analysis and wave 
field snapshot above. It shows that the optimization method in this paper can 
effectively reduce the spatial dispersion in low velocity homogeneous 
medium. 
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                (a)                             (b)  
 
Fig. 5. Slice of the snapshots at x = 950 m, z = 1600 ~ 2000m of (a) TESFD method and 
(b) CGSFD method. 

 
 

 
High-velocity medium 

 
Then a high-speed homogeneous model is tested to verify the 

effectiveness of the CGSFD method. The high-speed homogeneous model 
with a size of 201 201× , P-wave velocity is 4000 m/s and space order of 10. 
The time sampling interval is set 1t msΔ = , and the spatial sampling 
interval is set 15x z mΔ = Δ = . The source signal is represented by a Ricker 
wavelet with a center frequency of 40 Hz and is located at the center of the 
model. The difference coefficients are calculated by TESFD method and 
CGSFD method respectively, and the simulation results are shown in Fig. 6. 
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                (a)                           (b) 
 

Fig. 6. Snapshots of the acoustic field at 350 ms of (a) TESFD method and (b) CGSFD 
method. 

 
 

 
Figs. 6(a) and 6(b) are the snapshots computed by the TESFD and 

CGSFD methods, respectively, at the moment of 350 ms. From Fig. 6, we 
can clearly see that compared with the snapshot of the 10th-order TESFD 
method, the snapshot of the 10th-order CGSFD method effectively reduces 
the numerical dispersion in four boundaries (indicated by the red arrow). 
For further verification, we extract the slices from the snapshots in Fig. 6 for 
comparative analysis. The reference solution is obtained by using the 
traditional high-order FD scheme L = 10, and the result is shown in Fig. 7. 
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                    (a)                          (b) 

 
Fig. 7. Slice of the snapshots at x = 1425m, z = 2550 ~ 3000m of (a) TESFD method and 
(b) CGSFD method. 

 
As can be seen from Fig.7, in high-speed homogeneous medium, the 

degree of deviation of TESFD method from the reference trace is 
significantly more serious than that of CGSFD method. In other words, the 
CGSFD method can better match the reference channel compared with the 
traditional TESFD method. The result is consistent with the above 
dispersion analysis and snapshots, showing that the CGSFD method can 
reduce the spatial dispersion in high-velocity homogeneous medium.  

 
 
Complex medium 

 
In order to verify the effectiveness of the CGSFD method in the 

complex model, we perform numerical modeling on the Marmousi model 
with a relatively complex velocity field (Fig. 8). 
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Fig. 8. Marmousi model. 

 
 

The Marmousi model is a complex model with the size of 497 750× , 
and the simulation parameters are as follows: time sampling interval is 

1t msΔ = , spatial sampling interval is 15x z mΔ = Δ =  and the P-wave 
velocity is illustrated in Fig. 8. A Ricker wavelet with a center frequency of 
30Hz is used as the source signal, and the simulation results of 10th-order 
TESFD method and 10th-order CGSFD method are shown in Figs. 9(a) and 
9(b), respectively. 

 

 
                 (a)                                (b)  

 
Fig. 9. Snapshots of the acoustic field at 350 ms of (a) TESFD method and (b) CGSFD 
method. 
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Due to the complexity of Marmousi model, it is difficult for us to see 
obvious differences directly between the two snapshots, so we made local 
amplification for some areas with obvious dispersion improvement (as 
shown in the red box in Fig. 9). As can be seen from the red box, the 
CGSFD method is still effective in reducing the numerical dispersion in 
some areas with significant dispersion. In order to further compare the 
effects of the two methods, slices in Fig. 9 are extracted for comparative 
analysis, and the results are shown in Fig. 10. 

   

 
                (a)                                   (b)  
 
Fig. 10. Slice of the snapshots at x = 7500m, z = 6375 ~ 7125  m of (a) TESFD method 
and (b) CGSFD method. 

 
In the areas indicated by the green arrow of Fig.10, there are significant 

differences between the TESFD method and the reference trace, while the 
CGSFD method is almost identical to the reference trace. It shows the 
CGSFD method can also effectively suppress numerical dispersion in 
complex media. Therefore, under certain accuracy requirements, the space 
order required by the CGSFD method is lower than that of the TESFD 
method for difference forward modeling. Reducing the space order will 
reduce computation amount and improve efficiency. 
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CONCLUSION 

 
In order to ameliorate the numerical dispersion problem inherent in 

finite-difference method, we first establish an error function from the 
dispersion relation based on the staggered-grid scheme. Then we take the 
Taylor-series Expansion FD coefficients as the initial value. Finally, the 
conjugate gradient method is applied to iteratively calculates the optimized 
difference coefficients. Through the results of dispersion analysis and 
numerical simulation, the following understandings are obtained: 

 
 (1) In the case of the same space order, the difference operators 

obtained by the CGSFD method have higher accuracy than the difference 
operators obtained by the traditional TESFD method. As a result, the 
CGSFD method has better spatial dispersion suppression effect in forward 
simulation than the TESFD method. The optimized coefficients are easy to 
use because the CGSFD method does not need to change the structure of the 
finite-difference algorithm. This means that the CGSFD method can 
improve the calculation accuracy almost without increasing the calculation 
amount. 

 
 (2) Under the specific computing accuracy requirements, the low-order 

CGSFD method can be used to achieve the accuracy of the higher-order 
traditional TESFD method. Reducing the space order will reduce 
computation amount. It is shown that the CGSFD method requires less 
computation than TESFD method under the same accuracy. 

 
(3) When iterative optimization is carried out by mathematical method, 

the choice of initial value will affect the correctness and efficiency of 
iteration. Our method selects the difference operators of Taylor-series 
Expansion method as the initial value in conjugate gradient iteration, which 
not only ensures the correctness of iteration direction, but also speeds up the 
speed of iterative convergence. 

  
(4) The CGSFD method constructs the dispersion error function from 

the expression of the first-order spatial derivative of staggered-grid, which 
can effectively reduce the spatial dispersion. While the optimization of time 
domain difference is not considered, so there is no suppression effect on 
time dispersion. 

 
In addition, the method presented in this paper can also be applied 

effectively in the forward simulation of complex models and can be easily 
extended to the study of reverse time migration imaging and full waveform 
inversion.  
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