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ABSTRACT 
 
Sadeghi, Z., Goudarzi, A., Pakmanesh, P. and Moghaddam, S., 2022. Seismic residual 
static correction using BEADS. Journal of Seismic Exploration, 31: 65-80. 
 
 When seismic waves propagate through layers close to the surface, topography 
and velocity variations, as well as the thickness of this layer, change the shape of the 
travel-time hyperbolas. These deviations are known as static and cause misalignment and 
loss events in the CMP gathers, so estimating residual statics in complex areas is one of 
the greatest challenges in seismic data processing, and the results derived from them will 
affect the quality of the final reconstructed image and the results of the interpretation. In 
this research, at least in the category of seismic data processing, sparsity for the residual 
static correction is implemented for the first time. Baseline estimation and denoising 
using sparsity (BEADS) is based on modeling the series of seismogram peaks, as sparse 
with sparse derivatives, and additionally on modeling the datum as a low-pass signal. 
This method estimates the seismogram datum and residual static correction with sparsity 
and it's far assessed through evaluating with Gaussian smoothing that is a traditional 
method, using both synthetic and real seismic data. 
 
KEY WORDS: residual static correction, sparsity, datum correction, sparse derivative, 
    penalty function, low-pass filtering. 
 
 
INTRODUCTION 
 
 There are numerous sources of ambiguities that affect the quality and 
the overall performance of seismic data analysis (Smite and Steigstra, 1988; 
Barwick, 1998). As with many different analytical methods, seismic data 
measurements regularly take into consideration a combination of peaks, 
background, and noise  (McNulty  and  MacFie, 1998). Peak line shapes may 
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also have different natures, which include Gaussian or asymmetric 
experimental models (Felinger, 1998). Problems with smooth datum and 
statics are resolved in different steps (Laeven and Smit, 1985): a generally 
low-order approximation or smoothing for the datum, and varieties of 
filtering (Brown et al., 2000). Although it appears simple, the troubles of 
datum subtraction and static correction stay a long-status subject. 
 
         Methods based on linear and non-linear (Moore and Jorgenson, 1993; 
Kneen and Annegarn, 1996; Ruckstuhl et al., 2001) filtering or multi-scale 
varieties of filtering with wavelet transform (Chau and Leung, 2000; Hu et 
al., 2007; Cappadona et al., 2008; Liu et al., 2013)  had been suggested. The 
relative overlap between the peak spectra, the datum, and the noise has led to 
alternative regression models, based on different limitations. The low-pass 
section of the datum can be modeled with regular functions along with low-
degree polynomials (Mazet et al., 2005; Zhang et al., 2010) or (cubic) spline 
models (Fischer et al., 2000; Gulam Razul et al., 2003; de Rooi and Eilers, 
2012) in conjunction with manual identification, polynomial fitting, or 
iterative thresholding methods (Gan et al., 2006).  Many algorithms based on 
sparsity had been developed for reconstructing, denoising, detection, 
deconvolution. Most sparse modeling strategies are derived from the least 
absolute shrinkage and selection operator, basis pursuit methods (Chen et al., 
1998), total variation (Chan et al., 2001), and compound regularization 
(Bioucas-Dias and Figueiredo, 2008). The non-linear evaluation is 
denominated “morphological component analysis”, “geometric separation” 
or “clustered sparsity” (Kutyniok, 2014). Most datum signals in practice 
now do no longer observe polynomial laws faithfully over an extended 
range. Therefore, we practice a model of slowly converting datum drifts as a 
low-pass signal. Low-pass datum models are more flexible and suitable for 
figuring out the behavior of the smoothing operator than polynomial 
approximations or symmetry lines. 
 
 Since 1960, numerous techniques have been introduced for residual 
static correction. Some of those techniques are based on the inversion of 
arrival times and acquiring the desired displacement for the effects of source 
and receivers (Wiggins et al., 1976; Hatherly et al., 1994). Other static 
residual correction strategies using minimizing an error function that is 
acquired from linear inversion of deviation of arrived time, those strategies 
had insufficient overall performance (Ronen and Claerbout, 1985). Elboth 
delivered data denoising withinside the time-frequency domain (Elboth et 
al., 2008). Aghamiri offered a technique for removing the impact of 
residuals static through the usage of denoising in the f-x domain (Aghamiri 
and Gholami, 2016). 
 
 In 2018 a new technique with a niche genetic algorithm based on the 
Poisson disk sampling was presented. First, based on conventional residual 
static corrections, real number codes are calculated with the Poisson disk 
sampling to increase the uniformity of the preliminary solution. Then multi-
populations of niches are constructed with multi-threads to estimate residual 
statics (Zhou et al., 2018). In 2019, diverse strategies were presented. Taking 
benefit of the matching pursuit algorithm in seismic signal decomposition 
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and reconstruction, CMP gathers are decomposed into unique atoms and the 
residual statics are implemented to every atom of CMP trace inside a certain 
time window (Zhao et al., 2019). Some other article, makes use of the 
statistics of high-SNR data first breaks to calculate residual statics of shot 
points or receivers. These techniques now no longer rely on surface models 
and have no limit of statics (Pan et al., 2019). 
 
 
 
PRELIMINARIES  
 
 In this paper, small and capital letters x and A are used in bold, the 
former to indicate vectors and the latter for matrixes. The N-point signal x is 
signified as x = [𝑥!, 𝑥!,… , 𝑥!!!]. The elements of matrix A are illustrated 
as A!" or [A!"]. 
  
In this work, 𝑙! and 𝑙! are norms of x which are characterized as: 
 

                   (1)            X ! = X!
!

, X !
! = X! !    

!

. 

 
       As Figueiredo's work (Figueiredo et al., 2007) solves a sequence of 
minimization problems (MM method), we can minimize a challenging cost 
function F like this: 
 

                   (2)            X !!! = 𝑎𝑟𝑔𝑚𝑖𝑛!𝐺 x, x !    , 
   

 
𝑟 ≥ 0 indicates the iteration counter.  
 
 
DATUM ESTIMATION AND DENOISING: 
PROBLEM FORMULATION: 
 
      This work is based on modeling an 𝑁-point noise-free seismogram 
vector as: 
 

                   (3)         s = x + f  ,    s ∈ {R}!   . 
 
      Vector f is a low-pass signal. vector x is designed as a sparse derivative 
signal which itself and its first multiple derivatives are sparse. 
 
      The noisy data is designed as: 
 

                   (4)         d = s +w 
            = x + f +w, y ∈ {R}! 
 
and w is a stationary white Gaussian noise with variance 𝜎!. Now we have 
to evaluate f(datum) and x(peaks) at the same time from observation d. 
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         Our assumption is: in absence of peaks, low-pass filtering can give the 
estimate of the datum from a noise-corrupted observation. So: 
 

         (5) f = L d −  x . 
 

We can find the estimate   𝐬  like this: 
 

       (6) 𝐬 = 𝐟 + 𝐱 
   = 𝐋 𝐝 − 𝐱 + 𝐱 
   = 𝐋𝐝 + 𝐇𝐱 
 

𝐇 is the high-pass filter: 
 

                   (7)                𝐇 = 𝐈 − 𝐋    .                       
 
       To estimate 𝐱 from observed data 𝐝, we model an inverse problem with 
the quadratic data accuracy term 𝐝 −  𝐬 𝟐

𝟐. We have: 
 

                   (8) 𝐝 −  𝐬 𝟐
𝟐 = 𝐝 − 𝐋𝐝 − 𝐇 𝐱 𝟐

𝟐 
                 = 𝐇(𝐝 −  𝐱) 𝟐

𝟐 
 
        In this formulation, the data accuracy term depends on the high-pass 
filter H, also it does not depend on the datum estimate 𝐟. The optimization 
problem below provides an estimate of the peaks 𝐱. The datum estimate then 
will be obtained by (5). 
 
 
Compound sparse derivative model 
 
        In (3), for the estimated peaks, 𝐱, the first 𝒊 derivatives must be sparse. 
For the processing of sparse signals, we obtain the sparse signal behavior by 
using appropriate non-quadratic regularization terms. So, to achieve an 
estimated 𝐱, this optimization will be useful: 
 

                    (9) 
𝐱 = 𝑎𝑟𝑔𝑚𝑖𝑛! 𝑭 𝐱 =

𝟏
𝟐
𝐇(𝐝 − 𝐱) 𝟐

𝟐 + 𝝉𝒊𝐑𝒊(𝐃𝐢𝐱)
𝑵

𝒊!𝟎

 

	
𝑫𝒊 is the order –𝒊 difference operator. 
 
          𝑹𝒊 𝐯 = Ω(𝒗𝒏)

𝒏

 

 

(10)    

Ω: ℝ → ℝ is a penalty function, substituting (10) in (9), we obtain: 
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𝐱 = 𝑎𝑟𝑔𝑚𝑖𝑛!

𝑭 𝐱 =
𝟏
𝟐
𝐇 𝐝 − 𝐱 𝟐

𝟐

+ 𝝀𝒊  Ω
𝑵𝒊!𝟏

𝒏!𝟎

𝐃𝒊𝐱 𝒏

𝑵

𝒊!𝟎

 

 
 

                   (11) 

𝐰𝐡𝐞𝐫𝐞 𝐭𝐡𝐞 𝐜𝐨𝐧𝐬𝐭𝐚𝐧𝐭𝐬 𝝀𝒊≥ 0 are regularization parameters and an increase 
in them makes the 𝐃𝒊𝐱 sparser. 𝑵𝒊 indicates the length of 𝐃𝒊𝐱. 
 
 
ALGORITHMS 
 
Symmetric penalty functions 
 
We have (Ning et al., 2014): 
 

𝒈(𝒙𝒏,𝒗𝒏)
𝒏

=
Ω! 𝒗𝒏
𝟐𝒗𝒏

𝒙𝒏𝟐 + Ω 𝐯𝒏 −
𝒗𝒏
𝟐
Ω! 𝐯𝒏

𝒏

 

                       = 𝟏
𝟐
𝐱𝐓[𝚲 𝐕 ]𝐗 + 𝒄(𝐕) 

 

                      (12) 
 
 
 

  
Λ (v) is a diagonal matrix with diagonal elements and c(v) is the scalar. 
 

[𝚲 𝐕 ]𝐧,𝐧 =
Ω! 𝐯
𝐯𝐧

 

 

                      (13) 

 
𝑐 V = [Ω(𝑣!) −

𝑣!
2
Ω′(v!) ]

!

 

 

                      (14) 

 
Using (12) to (14), we have: 
 

𝜆! 𝑔([𝐷!𝑥]! , [𝐷!𝑣]!)
!!!!
!!!

!
!!! = !!

!
𝐷!𝑥 ![Λ 𝐷!𝑉 ](𝐷!𝑥) +!

!!!

𝑐!(𝑉)  

          
(1 (15) 

≥ 𝜆! Ω([D!x]!)
!!!!

!!!

!

!!!

 

 
Λ 𝐷!V  are diagonal matrices and  𝒄𝒊 𝐕  are scalars, 
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[Λ(𝐷!𝑥)]!,! =
Ω! [𝐷!𝑉]!
[𝐷!𝑉]!

 

 

                     (16) 

 𝑐! V =  [Ω([𝐷!V]!) −
!

[𝐷!V]!
2

Ω! [𝐷!V]! ] 

 

                     (17) 

 
Equality holds when x = v. Eq. (15) shows: 
 
G (x, v) = 1/2 H(d − x) !

! + [!!
!
(D!x)! 𝚲(D!V ](D!x)]!

!!! +
𝐶(V) 
 

      (18) 

 
Asymmetric and symmetric penalty functions 
 
 In the positivity of the seismogram peaks, it is better than applying the 
second form of BEADS. For this reason, we use an asymmetric penalty that 
penalizes negative values of x more than positive values.  
 

𝐱 = 𝑎𝑟𝑔𝑚𝑖𝑛! 𝑭 𝐱    

=
𝟏
𝟐
𝐇 𝐝 − 𝐱 𝟐

𝟐 + 𝜆!  𝜓! x!;  k
!!!

!!!

+ 𝜆! Ω([𝐷!V]!

!!!!

!!!

!

!!!

)  

 

(19) 

 
 
we have: 
 

g! x! , v! =  𝑋! Π V X
!!!

!!!

+ b!x + c(v) 

                             ≥  𝜓!(x!;  k) 
!!!

!!!

 

           (20) 

 
Π V  is a diagonal matrix with diagonal elements, b is a vector with 
elements, and c(v) is a scalar that does not depend on x (Ning et al., 2014). 
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             Π v !,! =

1 + 𝑘
4 𝑣!

, 𝑣! ≥ 𝜖

1 + 𝑘
4𝜖

, 𝑣! ≤ 𝜖
 

 

    (21) 

and: 
 

             [b]! =  
1 − 𝑘
2

 
 

          (22) 

 
 
PROOFS 
 
Gaussian smoothing filter 
 
       A Gaussian filter is a filter whose impulse response is approximately a 
Gaussian function. It has the minimal possible group delay because it has the 
properties of having no overshoot to a step function input while minimizing 
the rise and fall time. Gaussian filter is taken into consideration as the 
appropriate time-domain filter, simply because the sinc is the appropriate 
frequency-domain filter. Mathematically, a Gaussian filter modifies the 
input signal through convolution with a Gaussian function. It is a low-pass 
linear filter used for noise reduction. As a Mexican hat, this filter has a 
climax and, on each side, it decreases quickly, Fig. 1. assuming data as one-
dimensioned, the middle ones as of the highest weight, and as shifting to 
corners data weight reduce, this option preserves the edges and boundaries 
(Rakheja and Vig, 2016). 
  
 Two variables Gaussian filter indicates by: 
 

           𝐺! x, y = A𝑒
! !!!! !

!!!!
!
! !!!!

!

!!!!  
 

           (23) 

In which µ is peak and 𝜎 is the variance and 𝐴 = 1/2𝜋𝜎!. 
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Fig. 1. Gaussian function (Rakheja and Vig, 2016). 
 
 
 
Synthetic data 
 
1. There are 2 methods to generate synthetic data, in both, it's far feasible 
to make the seismic data peaks. Making signal x with different amplitudes, 
widths, and positions as a superposition of Gaussian function. There are 
techniques to simulate the datum (Ning et al., 2014): Type 1 simulated 
datum: by the sum of an order-n polynomial, and an f-frequency sinusoidal 
signal, a data signal is made. 
 
 
2. Type 2 simulated datum: a datum is made with a power spectrum 
limited to [0,𝑓!] Which is a low-pass range, as a stationary random process. 
This kind of signal is achieved by applying a low-pass filter (with a cutoff 
frequency 𝑓!) to a white Gaussian process. 
 
 
3. If Gaussian white noise is added to each trace, we have noisy data. 
For each signal and SNR level, the BEADS is used to estimate the data, this 
gives us the estimated difference between the data and the peaks, which 
leads to the time change required for the static correction. The accuracy of 
this is assessed by identifying the SNR of the output. Fig. 2 shows the static 
residual correction of the seismic data simulated with BEADS. As may be 
seen, events are smoothed sufficient to be taken into consideration as static 
corrected, and noises are removed. The proposed method (BEADS), also can 
be in comparison with every other algorithm: The Gaussian method, it could 
be visible that on average, BEADS provides a slightly smaller error.  
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(a) 

	

 
(b) 

	

 
(c) 

	

 
(d) 
 
 
 
Fig. 2. BEADS static correction on synthetic data. (a) input, (b) before static correction, 
(c) after static correction using BEADS, (d) after static correction using Gaussian 
smoothing. 
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Real data 
 
       In Fig. 3 and Fig. 4 there is the impact of static correction using 
BEADS on single events of real records and in Fig. 5 total static of those 
events are illustrated:  
 
 

 
(a) 

	

 
(b) 

	

 
(c) 
 
 
 
Fig. 3. (a) Real event before the static correction, (b) the same event after static 
correction using BEADS, (c) the same event after static correction using Gaussian 
smoothing. 
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(a) 

 
(b) 

 
(c) 
 
Fig. 4. (a) A real event before the static correction. (b) The same event after static 
correction using BEADS. (c) The same event after static correction using Gaussian 
smoothing. 
  

 
 
   
Fig. 5. Total static of the events in Fig. 3 and Fig. 4. 
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      An efficient denoising technique reduces the wavelength of data to make 
it extra apparent in the trace, in Fig. 6 and Fig. 7 this trait of static correction 
using BEADS is shown:   
 

(a)  
	

)b( 	

                       
 

(c)  
 
Fig. 6. (a) Wavelength of an event in input data, (b) its wavelength after applying 
BEADS,  (c) after applying Gaussian smoothing. 
 
 

 
                          (a) 

	

 
                         (b) 

	

 
                         (c) 
 
Fig. 7. (a) Wavelength of an event in input data, (b) its wavelength after applying 
BEADS,  (c) after applying Gaussian smoothing. 
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 After stacking, the larger amplitude yields the greater apparent events 
in the seismic trace, and BEADS could make an increase in event 
amplitudes. In Fig. 8, input stacked data is shown in blue and the static 
corrected stacked data after as the use of the proposed method is illustrated 
through black, the variations among amplitudes may be seen. Statics take 
into consideration as high-frequency noises, so we should eliminate the 
high-frequency part of input data to acquire smooth events, as in Fig. 9 the 
amplitude in the high frequencies is mitigated (power in the vertical axis is 
amplitude to the power of two).  
 

  
 
Fig. 8. Blue one - stacked data. Black one - the same data after BEADS static correction 
and stack. 
 
 

 
(a) 

	

 
(b) 
 
Fig. 9. (a) Power in terms of frequency. The blue one - before the static correction, the 
black one-after static correction using BEADS. (b) The blue one - before the static 
correction, the black one - after static correction using Gaussian smoothing. 
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         In Fig. 10 we have shown real seismic data (a) and the same trace after 
applying residual static correction using the BEADS method. There are 
some obvious differences between them, which show that more events are 
visible and aligned. 
 

 
                                      (a) 

 
                                     (b) 
  

Fig. 10. (a) Real seismic data and (b) after static correction using BEADS. 
 
 
 
CONCLUSION 
 
 In this paper, we have addressed the residual static correction 
problem in the case of noise reduction. The proposed technique is primarily 
based totally on non-parametric models for the seismogram peaks and 
mainly datum that is modeled as a low-pass signal and the series of 
seismogram peaks is modeled as sparse and having sparse derivatives. In 
addition, to make sure of the positivity of seismogram peaks, we used both 
asymmetric and symmetric penalty functions. The problem is formulated as 
banded matrices so that the iterative optimization is computationally 
efficient, can be applied for long data series, and uses much less memory.  
The overall performance of the datum correction is assessed on simulated 
seismic records and in comparison, with different methods. It may be visible 
from experiments that the recommended technique can estimate the datum 
of real seismogram a lot higher and because it estimates the datum and the 
seismograms peaks jointly, it could carry out noise reduction and datum 
correction simultaneously. This technique additionally may be modeled for 
different kinds of signals by customizing penalty functions and 
regularization parameters (λ!). It makes use of asymmetric and symmetric 
penalty functions to assure the positivity of the expected peak. By 
estimating the datum and peaks we will achieve the time shifts necessary for 
static correction. 
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