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ABSTRACT 
 

Fang, J.W., Zhang, L., Zhou, H., Liu, Z.D., Wang, B. and Chen, W.J., 2022. Seismic 
random noise attenuation using multi-scale sparse dictionary learning. Journal of Seismic 
Exploration, 31: 177-202. 
 

Seismic data contain random noise, which affects data processing and interpretation 
and possibly limits the use of seismic data in parameter building and attribute prediction. 
To effectively remove such noise, we develop a denoising workflow based on multi-scale 
sparse dictionary learning. The multi-scale sparse dictionary learning method decreases 
the complexity of data by two approaches. One is seismic data-sparse representation 
from the data domain to the wavelet domain by wavelet bases. The other is denoising by 
sparse dictionary learning in a certain frequency band without the noise effect from other 
frequency bands. Meanwhile, the wavelet transform can also reduce the dimension of the 
data, which ensures the computational efficiency of the proposed method. After 
analyzing the effects of sparse dictionary learning parameters on seismic data denoising, 
we test the proposed method on two synthetic and two field datasets. We learn from the 
examples that our approach can effectively recover signals from simulated and real noisy 
data, as well as time-variant noisy data. Compared with the sparse dictionary learning, 
K-singular value decomposition dictionary learning, and double-sparsity dictionary 
(DSD), our method can obtain the best-denoised result with less effective signals leaking 
in noise sections. 
 
KEY WORDS: sparse dictionary learning, wavelet transform, multi-scale denoising. 
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 INTRODUCTION 
 

Sparse representations aim to obtain the sparse linear coefficients of 
original signals by given or learned basic signals and play important roles in 
seismic data denoising, interpolation, migration, and image applications. 
Random noise occurs in many stages of seismic acquisition and processing, 
which conceals the information of weak signals and reduces the 
signal-to-noise ratio (S/N) of seismic data. Except for direct filtering 
(Bednar, 1983; Yilmaz, 2001), data transforms, e.g., wavelet transform (WT; 
Ioup and Ioup, 1998; Zhang and Ulrych, 2003), curvelet transform 
(Hennenfent and Herrmann, 2006; Wang et al., 2008; Naghizadeh and 
Sacchi, 2010; Neelamani et al., 2010), seislet transform (Fomel et al., 2013), 
and Radon transform (Zhang et al., 2020), have been widely used as 
sparsity-promoting transforms to remove such noise and improve the quality 
of seismic data. Because signals and noise have different characteristics in 
various domains, the data transform from one domain to another can 
implement the extraction of effective information. 
 

In recent years, sparse representations based on dictionary learning 
have been proposed to represent the most useful information from noisy 
data. Dictionary learning can be divided into two general categories: 
analytic atom approach and learning-based atom approach. Some standard 
dictionaries, such as discrete cosine transform (DCT) dictionary, Harr 
dictionary, Gabor dictionary, and so on, are selected for analytic atom 
signals as a fixed basis. However, the fixed dictionary may not obtain the 
best sparse representation of original signals in some cases because the fixed 
dictionary cannot adapt to the characteristics of the signals. Therefore, a 
learning-based dictionary approach can adaptively find the required sparse 
basis by training. One of popular learning-based K-singular value 
decomposition (K-SVD) dictionary learning methods offers refined 
dictionary that adapts the structure of the data (Aharon et al., 2006; 
Rubinstein et al., 2009; Beckouche and Ma, 2014; Liu et al., 2017; Lv and 
Bai, 2018; Zu et al., 2018). In order to enhance the K-SVD, Rubinstein et al. 
(2009) believed that dictionary atoms themselves might have some 
underlying sparse structure over a more fundamental dictionary and 
proposed a double learning sparse dictionary. However, the relatively large 
computation amount limits its application to big seismic data, especially for 
three-dimensional (3D) seismic data. The computation amount is caused by 
updating the dictionary one column by one column and operating SVD in 
each column. Recently, the data-driven tight frame (DDTF) method was 
proposed by Cai et al. (Cai et al., 2014; Liang et al., 2014; Yu et al., 2015). 
The different point is that this method is constrained by a tight frame, and 
the DDTF dictionary is updated by a single SVD; thus, the computation cost 
of this method makes it far more practical than K-SVD. Owing to its higher 
efficiency than traditional dictionary learning methods, Yu et al. (2016) 
proposed a more adaptive Monte Carlo DDTF in patch selection in seismic 
data recovery, and Zu et al. (2019) adopted the dip patch selection in 
dictionary learning. Chen (2017) and Feng (2021) also proposed a fast 
dictionary learning approach based on the sequential generalized K-means 
algorithm to accelerate multi-dimensional seismic data denoising. 
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 Although a learning-based dictionary can be more adaptive than 
fixed-basis transforms, the complexity of seismic data and no 
prior-constraint structural information involved in the dictionary's 
construction are also challenging problems. To improve the robustness of 
the learning-based dictionary when applied to seismic data denoising, Ophir 
et al. (2011) introduced the idea of a multi-scale K-SVD dictionary learning 
algorithm based on wavelet transform. Zhu et al. (2015) also proposed a 
method of seismic data denoising through multi-scale and 
sparsity-promoting K-SVD dictionary learning. Besides, Chen et al. (2016) 
introduced a double-sparsity dictionary method (DSD) through seislet 
transform-based DDTF. A coherence-constrained dictionary learning 
method has been developed by Turquais et al. (2017) to ease the prior 
information on the noise variance. 
 

Because of the effects of attenuation, geometric divergence, and 
frequency-dispersion, the acquired seismic data are time-variant, i.e., 
amplitude attenuation and phase distortion during seismic wave propagation. 
Compared with the global Fourier transform, wavelet transform can 
represent the local features of signals in the time and frequency domain. 
What's more, the wavelet transform is invertible, and there are no truncation 
artifacts displayed in scales. In this paper, we plan to develop a multi-scale 
sparse dictionary learning method based on wavelet transform. The 
proposed method follows the main idea of Ophir et al. (2011) and Zhu et al. 
(2015). The different point is that our approach employs more effective 
sparse dictionary learning rather than K-SVD or K-SVD-based method in 
the wavelet domain (frequency domain) to deal with time-variant seismic 
data. By wavelet transform, we can focus on the signal analysis of a 
particular seismic frequency band rather than directly using image denoising. 
What's more, we also discuss how to choose suitable parameters involved in 
sparse dictionary learning. In the proposed method, the wavelet transform 
base not only provides good time-frequency analysis coefficients, but also 
decreases the complexity of original signals, and the sparse dictionary 
learning provides the multi-level sparsity on WT coefficients. We analyze 
its denoising ability in terms of the S/N and signal events, as well as its 
efficiency. 
 

This paper is organized as follows. After this section, we introduce the 
basic knowledge of sparse dictionary learning and multi-scale waveform 
transform. Then we give the workflow of seismic data denoising using 
multi-scale sparse dictionary learning. Denoising experiments on two 
synthetic and two real seismic data sets are provided in the next section, 
followed by the Discussion and Conclusions sections. 
 

 
THEORY 
 

Sparse dictionary learning 
 
In this section, we briefly give the introduction of sparse dictionary 

learning. Readers may refer to literature (Chen et al., 2001; Daubechies et 
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 al., 2003; Cai et al., 2014) for some terminologies, such as tight frame, 
atoms. To obtain a good filter matrix D , which is constrained by a tight 
frame such that IDDT =  for given seismic data d, we solve the following 
optimization problem, 
 

 ,.t.s,minarg
,

IDDmmdD T
0

2

F

T

Dm
=+− α         (1) 

 
where m is the sparse representation of data d, 

F
⋅  and 

0
⋅  denotes the 

Frobenius and 0L -norm, and superscript T  stands for the adjoint operator, 
α  is a coefficient to balance the fidelity term and the regularization term. 
The first term in eq. (1) is fidelity and the second term is regularization. The 
decomposition operation can be expressed as m = DTd, and the 
reconstruction operation can be written as d = Dm. Usually, we select the 
enough patches of d (Zhan and Dong, 2016) as the input data, and solve 
eq.(1) by the following two steps: 
 

Step 1: Dictionary updating. By giving an initial canonical filter matrix 
D , we aim at seeking for the tight frame to maximize its sparsity. The 
data-driven filter matrix D  is trained by minimizing 

..t.s,minarg IDDmmdD T
0

2

F

T

D
=+− α                 (2) 

 
 An efficient algorithm to solve eq. (2) is a thresholding denoising 
method under a tight frame (Schnemann, 1966; Cai et al., 2014; Bao et al., 
2015; Sezer et al., 2015.). D  and m can be efficiently computed by 
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where X  and Y  are obtained by operating SVD for ( )Tmd γ , i.e. 
( ) YXmd T

Δ=γ , Δ  is a diagonal matrix, γ  denotes the th-γ  iteration, and 
λτ  is the hard-thresholding operator given by 
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where λ  is closely related to the noise variance and the desired sparsity 
degree of the image, and dDP T= . One thing to be mentioned is that eq. (3) 
can update all elements of D  in one SVD operation. 
 

Step 2: Sparse coding by the learned dictionary. We fix the tight frame 
D  and solve the following optimization problem, 
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.minarg

0

2

F
m

mDmd α+−              (5) 

 
 As we know, the 0l -norm problem of optimization is an NP-hard 
problem and cannot be solved directly. We solve eq. (5) by classical 
orthogonal matching pursuit (OMP) (Tropp, 2007). We need to set the 
number N  of maximal sparse solutions, i.e., sparsity level, for a specific 
example. We recover the denoised data approximately by 
 
  ,~ Dmd ≈                   (6) 
 
and we reshape patch data d

~
 to the original data size. 

 
 
A multi-scale approach based on wavelet transform  

 
Wavelet transform has been widely used in seismic data noise 

attenuation (Ioup and Ioup, 1998; Miao and Cheadle, 1998; Yuan and 
Simons, 2014). We use two sets of scaling functions (Jawerth and Sweldens, 
1994), j

kφ
~  for the analysis and j

kφ  for the synthesis, as well as two sets of 
wavelet functions (Daubechies, 1992), j

kψ~  for analysis and j
kψ  for 

synthesis, where j denotes a particular scale and k  denotes translation in 
time (Daubechies, 1992; Mallat, 1999). Then a signal ( )ts  from a trace of 
data d  can be divided into an approximation coefficient of J

ka  and a 
series of detail coefficients of j

kd  given by, 
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where J  denotes the maximal scale for decomposing the signal, and ,  
represents the inner product operation. The signal ( )ts  can be perfectly 
reconstructed by summing over all translators k  and scales Jj 1,2,...,=  as 
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 Regarding discrete seismic signals, supposing that ( )nc0  is the discrete 
signal of ( )ts , we can use filter bank (Strang and Nguyen, 1996; Mallat, 
1999) to implement eqs. (7) and (8). The analysis band has two filters, 
low-pass g~  and high-pass h~ , which correspond to analysis scaling 
function j

kφ
~  and wavelet function j

kψ~ , respectively. Similarly, the 
synthesis band also has two filters, low-pass g  and high-pass h , which 
correspond to the synthesis j

kφ  scaling function and j
kψ  wavelet function, 

respectively. Then the decomposition of signals can be formed as 
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where scales 11,2,..., −= Jj . Then the reconstruction of signals can be 
formed as 
 

   
( ) ( ) ( ),11 ∑∑ +−+− +=

k
jk2n

k
jk2nj kdhkcgnc           (10) 

where scales ,...,01, JJj −= , 10,1,..., −= jSk  and the jS  stands for the 
length of j-th scale signals. Different wavelet functions and scaling 
functions correspond to different combinations of filters.  
 
 
Multi-scale sparse dictionary learning  

 
Based on the previous knowledge, the multi-scale sparse dictionary 

learning is given as follows. For seismic data d, we use the wavelet 
transform to obtain the coefficients c by 

 
,Wdc =                        (11) 

 
where [ ]Jcccc ,...,, 21=  and W  stands for the forward wavelet transform 
which is described in eq. (9). After dividing the seismic data into different 
scale sparse coefficients with different frequency bands, we first remove the 
sparse scale coefficients [ ]Jcccc ʹ=ʹ ,...,, 21  beyond the maximum useful 
frequency, then perform the dictionary learning on remaining sparse 
coefficients [ ]JJJ cccc ,...,, 21 +ʹ+ʹ=ʹ́  by 
 

  ,.t.s,minarg
,

IDDmmcD j
T
j0j

2

Fjj
T
j

Dm jj

=+− α        (12) 

 
where cc j ʹ́⊆  and ccc ʹ́+ʹ= . jm  is the dictionary sparse coefficient 
corresponding to jc . The denoised wavelet coefficients jc~  with respect to 
c ʹ́  can be obtained by 
 
  .~

jjj mDc =                    (13) 
 
 Finally, the data after removing noise by multi-scale sparse dictionary 
learning can be resolved by wavelet reconstruction 
 
  ,~~ cWd !!!=                  (14) 
 
where W!!!  stands for the inverse wavelet transform which is described in 
eq.(10), and d~  is the noise removed seismic data. 
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There are three potential advantages of the multi-scale sparse 

dictionary learning. One is that the wavelet coefficients have more focused 
energy than that the original signal. Consequently, the dictionary learning 
process of multi-scale sparse dictionary learning performs well on the 
low-complexity coefficient data. The second is that WT can act as a useful 
time-frequency analysis tool to handle with the seismic time series. As a 
result, we can denoise by dictionary learning in a specific frequency band 
and avoid the effect of the noise of other frequency bands. The last is that 
WT can reduce the data size, specifically, each WT operation can decrease 
data size to about half of its input, which leads to train dictionary on a small 
dataset. As a result, the multi-scale sparse dictionary learning can ensure the 
efficiency by multi-scale wavelet transform. 

  
 

The choices of parameters for the proposed algorithm 
 
The ideal wavelets for seismic data decomposition possess two main 

points. One is that seismic data achieve a sparser representation under the 
wavelet expansion. The other is that the wavelets have proper vanishing 
moments because decomposition using the wavelets with large vanishing 
moments costs more than those using fewer vanishing moments (Yuan and 
Simons, 2014). Besides these, the commonly used Daubechies wavelet 
family can use the same wavelet function and scale function both for the 
wavelet analysis and synthesis. In this paper, we employ the wavelet db4 
from Daubechies wavelet for WT operation, and the filters corresponding to 
wavelet function and scale function are h~ =[-0.0106, 0.0329, 0.0308, 
-0.1870, -0.0280, 0.6309, 0.7148, 0.2304] and g~ =[-0.2304, 0.7148, -0.6309, 
-0.0280, 0.1870, 0.0308, -0.0329, -0.0106], respectively. 

 
There are five parameters to be appropriately set for an excellent 

denoised result. The parameters are the maximal decomposition scale J, the 
number N of sparsity levels, hard-thresholding operator λτ , filter size LL× , 
and the number K of dictionary updates. The maximal decomposition scale 
J depends on the temporal sampling intervals, record time, and the signal’s 
dominant frequency. The parameter N (Lopes, 2016) has a close relation to 
the structure in seismic data, i.e., it is no less than the number of main 
events in the data if there exists a good transform base. The 
hard-thresholding operator λτ  balances the initial dictionary and the 
trained dictionary, and it has a close relation to the variance σ  of noise. 
We will analyze this in the example section. Generally, the larger L in filter 
size obtains better-denoised results. Still, the cost is more expensive than 
that with a small L. Regarding parameter K, the quality of denoised results 
obviously improves at the beginning and gradually becomes stable with the 
increase of K since the learned dictionary gradually captures enough 
features of data. 
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NUMERICAL EXAMPLES 
 

In this section, two synthetic and two field data examples are chosen to 
test the denoising performance of the proposed method. All noisy data are 
filtered within 5-80 Hz to focus on the seismic frequency band. The noisy 
data is expressed as 

 
,ε+= dd                   (15) 

 
where d  denotes the clean data and ε  denotes the Gaussian band-limited 
noise with zero mean. Given the denoised signal d , the S/N is defined by 
 

  .~log10 2

2

2

2
10

dd

d
NS

−
=             (16) 

 
 
 
Synthetic examples 

 
First, we use seismic data, named example 0, shown in Fig. 1a from a 

simple structure to observe the parameters' performance. Fig. 1b displays 
noisy data with S/N = 2 dB, and Fig. 1c depicts denoised result with a set of 
parameters. To study operator λτ , we use a series of λ , varying from σ1.0  
to σ7.0  for different S/N noisy data, where σ  is the noise variance. Fig. 
2a shows the denoised results using full frequency band noisy data, and Fig. 
2b shows the denoised results using the noisy data within 5-80 Hz. When 
we focus on the denoising results in Fig. 2a, we note that the S/Ns of the 
results increases gradually with the increase of λ , and the high S/Ns 
appears from 4.5 to 5.5 times of the variance of Gaussian white noise, then 
the S/N decreases dramatically with the increase of λ . More interestingly, 
we note from Fig. 2b that the S/Ns of the results increase greatly when λ  
varies in [3σ , 4σ ]. Then the S/Ns keep stable when λ  varies in about [4σ , 
5.5 σ ]. Finally, the S/Ns decreases slightly with the increase of λ . 
Therefore, the range [4.5, 5.5] may be a good choice for λ  in the process 
of seismic data denoising. 
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(a)        (b)         (c) 

Fig. 1. (a) Clean data, (b) noisy data, and (c) denoised section. The frequency range of 
noisy data is 5-80 Hz. The S/N of the original data is 2 dB and that of denoised result is 
14.48 dB. The sparsity level is N = 3, hard-thresholding operator στλ 5= , filter size L = 
16, and the number of dictionary updates K = 20. This is “example 0”. 

 
 

 
  (a) 

 
   (b) 

Fig. 2. The S/N of denoised data corresponding to different λτ  operators and S/N of the 
input data. (a) Denoised results with full frequency band data and (b) denoised results 
with 5-80 Hz data. Different lines stand for the different original S/N varying from (a) -2 
dB to 3 dB and (b) 1 dB to 6 dB. This is “example 0”. 
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 Furthermore, the filter matrix D  using a filter size of 16×16 by setting 
σσσλ 7.04.5,2.0  , =  are shown in Figs. 3b-3d. Compared with an initial 

dictionary, it is noted that the matrix is gradually updated as a symmetric 
matrix under the constraint condition IDDT =  with the increase of λ . 
Smaller λ  leads to more bases, and larger λ  causes fewer bases in the 
filter matrix. Too many bases mean the current bases are not updated 
enough to obtain the data's sparse representation. Also, few bases suggest 
that the current filter matrix only captures some of the data's main structures. 
Two cases cannot learn a suitable filter matrix for sparse representation. 
Therefore, it is crucial to choose a proper λ  to train a suitable filter matrix. 

 
 

 
(a)              (b) 

 
(c)             (d) 

 
Fig. 3. (a) Initial filter matrix G and updated filter matrices using the filter size of 16×16 
by setting (b) σλ 2.0= , (c) σλ 4.5= , (d) σλ 7.0= . The noisy data with S/N=2 dB are 
filtered in 5-80 Hz. The maximum iteration number is 20. This is “example 0”. 
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 We also investigate the effect of iterations and filter size on denoising 
results. We note from Fig. 4 that the filter size has a remarkable effect on 
denoising. When using a larger filter size, we can obtain a higher S/N. The 
reason is that large filter size makes the learned filter matrix capture the 
abundant structures in seismic data more likely. However, the running time 
increases with the size of the filter. The running times of 11.3 s, 12.99 s, 
19.93 s, and 24.23 s correspond to filter sizes of 4×4, 8×8, 12×12, and 
16×16 for the test data of the size of 256×256. We also note that when the 
iteration increases, the S/Ns improve at first and then reach stability, 
especially for the larger filter size cases. In general, about 20 iterations of 
dictionary updates are enough for sparse dictionary learning by balancing 
the efficiency and denoising quality. 

 
 

 
 
Fig. 4. The S/Ns of denoised results of sparse dictionary learning method. Different lines 
stand for the different filter sizes of 4×4, 8×8, 12×12, and 16×16. The noisy data with 
S/N = 2 dB are filtered between 5-80 Hz, and the maximum iteration number is 20. This 
is “example 0”. 

 
 
We now conduct tests on a synthetic seismic data set (example 1) 

shown in Fig. 5a with five events generated by a time-invariant Ricker 
wavelet. To test the denoising performance for different energy events, we 
add some Gaussian white noise on the signals and show the noisy data in 
Fig. 5b. We use a 5-80 Hz band-pass filter to obtain noisy data in Fig. 5c. 
Since the dominant frequency of Ricker wavelet is 40 Hz and the temporal 
sampling interval is 1 ms, we set J as 6 to divide data into different 
frequency bands, the lowest band is 0-7.8 Hz, and the highest band is 
250-500 Hz. Before we conduct sparse dictionary learning on wavelet 
coefficient, we first analyze the decomposition coefficients shown in Fig. 6, 
from which we note that the signals mainly distribute on scales 2-6, and the 
coefficients of scale 1 are zeros because of filtering, thus we perform 
denoising on scales 2-6. 
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   (a)                (b)            (c) 

 
Fig. 5. (a) Clean data, (b) S/N = 2 dB noisy data, and (c) noisy data after filtered by using 
5-80 Hz band-pass filter. This is “example 1” with time-invariant data. 

 
 
 
 

   
(a)       (b)        (c) 

 
(d)           (e) 

 
Fig. 6. Detail coefficient panels corresponding to scales 2 to 6 obtained by WT. These 
results are WT coefficients of example 1 and the size of data in time dimension decreases 
from 255 on scale 2 to 22 on scale 6, which is a decrease in a factor of about 45 from the 
original data (of 1001 samples). This is “example 1”. 
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 The sparsity level N is set as 5 in this example. We use the maximum 
filter size of 16 × 16 to conduct 20 iterations on the coefficients shown in 
Fig. 6. Since the wavelet transform decreases the data size, it is necessary to 
use a variable filter size. The WT obtains coefficients with different sparsity, 
i.e., the signals are more concentrated to the dominant frequency of signal 
than noise. Therefore, we adopt the median filtering method to get rough 
noise coefficients and then calculate the variances of noise coefficients for 
determining a suitable λτ . Figs. 7a-7e show the denoised coefficient panels 
of scales 2-6 with the same magnitude range as Fig. 5. The panels in Figs. 
7a-7e reveal clearer structures than those in Figs. 6a-6e. We show the 
differences between Figs. 6b-6e and Figs. 7a-7d in Figs. 8a-8e with the 
same magnitude range for a detailed comparison demonstrating effective 
noise separation. 

 
The final denoised result is shown in Fig. 7f, and the S/N 

corresponding to this result is listed in Table 1. It is noted from Table 1 that 
the S/N increases from 1 dB of the original noisy data to 13.55 dB of the 
final denoised data. It is also observed that fewer signals or noise leak in the 
error section (Fig. 8) which is the difference between Fig. 7f and Fig. 5a. 
Sparse dictionary learning and WT using a fixed threshold (Donoho, 1995) 
are performed to make comparisons. The same parameters, including the 
maximal sparse solutions, the iterations for filter dictionary update, and the 
maximum filter size, are set for the direct sparse dictionary learning and the 
multi-scale sparse dictionary learning. The waveforms of clean and noisy 
data are depicted in Figs. 9a and 9b, the denoised results are shown in Figs. 
9c-9e, and corresponding removed data are illustrated in Figs. 9f-9h. We 
note that the WT with a hard threshold can effectively remove the noise  
(Fig. 9c) but damage some weak useful signals (Fig. 9f). If we operate 
sparse dictionary learning directly on the noisy data, the denoised result  
(Fig. 9d) contains some small noise. However, the proposed method can 
recover the signals more effectively, as shown in Fig. 9e. We conclude that 
the multi-scale sparse dictionary can relieve the effect of small noise 
compared with the direct dictionary learning. The S/Ns of the results are 
listed in Table 1, which also indicates these features. In multi-scale sparse 
dictionary learning, when we conduct WT on the data, we obtain wavelet 
coefficients, then we use sparse dictionary learning to recover the sparse 
coefficient of signals from them. This is a multi-scale sparse process, 
therefore it is reasonably able to obtain a better result. 
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(a)       (b)        (c) 

 
(d)       (e)        (f) 

 
Fig. 7. (a)-(e) Denoised detail coefficient panels of scales 2 to 6, (f) reconstructed signals 
by using the scales shown in (a)-(e). In this example, the sparsity level is 5, filter size is 
16, and the number of dictionary updates is 20 on each coefficient panel. This is 
“example 1”. 

 

 
(a)       (b)        (c) 

 
(d)       (e)         (f) 

Fig. 8. (a)-(e) The difference panels between noisy coefficients shown in Fig. 6 and 
denoised coefficients shown in Fig. 7 of scales 2-6. (f ) The difference between Fig. 5(a) 
and Fig. 7(f ). This is “example 1”. 
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We also compare the dictionaries shown in Fig. 10, where Fig. 10a 

displays the dictionary trained by sparse dictionary learning on the seismic 
data, and Fig. 10b displays that by sparse dictionary learning on the wavelet 
coefficient (detail scale 3 for example). We note that the dictionary atoms 
trained on the wavelet coefficient are simpler, i.e., we can use very sparse 
and concise bases to represent the useful information. We also display the 
curves of  S/Ns with the number of iterations in Fig. 11a.  We note from 
Fig. 11a that the S/Ns obtained by multi-scale sparse dictionary learning 
become higher than that by sparse dictionary learning, and its S/Ns 
gradually keep stable near the 20th iteration. For further analyzing the 
denoising  ability of different approaches,  we test on the data shown in 
Fig. 5a with about 3-13 dB S/Ns and show the S/Ns of  denoised data in 
Fig. 11b. We note from Fig. 11b that the proposed method has the ability to 
achieve the highest S/N, especially for low S/N data. 

 
 Next, we exhibit a time-variant example (example 2), in which we 
utilize the same parameter setting as the last example. We adopt a quality 
factor Q = 60 to generate the clean time-variant (Margrave, 1998) seismic 
data shown in Fig. 12a. We note an apparent amplitude attenuation and 
phase changes from Fig. 12a, comparing with Fig. 9a. Fig. 12b shows the 
noisy data with the same S/N as used in Fig. 9b. Figs. 12c-12e depict 
denoised results obtained by WT threshold, sparse dictionary learning and 
multi-scale sparse dictionary learning, and Figs. 12f-12h show the 
corresponding error sections. Figs. 12c and 12f show that the WT threshold 
seems to get clearer data but damages the signals. Sparse dictionary learning 
retains some small noise (Fig. 12d) and damages a strong event (Fig. 12g). 
From S/Ns of denoised results (Table 1), we also note that the denoising 
ability of sparse dictionary learning becomes weaker for time-variant signals 
than for time-invariant signals. However, multi-scale sparse dictionary 
learning can overcome this weakness and has better performance. From the 
final error profiles shown in Figs. 12f-12h, we also know that few noise and 
signals are in the error section corresponding to multi-scale sparse 
dictionary learning. Similarly, we display the curves of the S/Ns with 
iteration in Fig. 13a and note that the S/Ns of the proposed method exceeds 
that of sparse dictionary learning. We also compare the S/Ns of the denoised 
results corresponding to the proposed method with those of WT and sparse 
dictionary learning in Fig. 13b. The data with about 3-13 dB S/N Gaussian 
band-limited noise are for testing. It is noted from Fig. 13b that our 
proposed method has an obvious advantage in achieving the highest S/N. 
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(a)            (b) 

 

(c)             (d)           (e) 

 

(f )         (g)       (h) 

 
Fig. 9. (a) Clean data, (b) noisy data within 5-80 Hz, and denoised profiles using different 
approaches of (c) WT with hard threshold, (d) sparse dictionary learning, and (e) 
multi-scale sparse dictionary learning. Error sections (f)-(h) corresponding to (c)-(e). 
This is “example 1”. 
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 Table 1. The S/N of denoised results in decibels obtained by using different approaches. 
SDL represents sparse dictionary learning and MSSDL represents our multi-scale sparse 
dictionary learning. 
 

Data Origina
l Filtered WT SDL MSSDL 

Example 
1 1.0 8.93 10.88 12.14 13.55 

Example 
2 0.76 8.93 11.16 12.10 13.59 

2D Field –6.0 2.11 3.79 6.74 7.47 
 

  
(a)                (b)  

 
Fig. 10. Dictionaries from (a) sparse dictionary learning on seismic data and (b) sparse dictionary 
learning on sparse wavelet coefficient of scale 3. The dictionaries are obtained by displaying the 
learned filter matrix as atom blocks. This is “example 1”. 

 

 

      (a)                    (b) 

Fig. 11. (a) The S/N of denoised results with iterations, the S/N of the original data is 
8.93 dB, and (b) the S/N of denoised results obtained by the three methods with different 
original S/N. This is “example 1”.  
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(a)       (b) 

 

 

(c)        (d)       (e) 

 

(f)        (g)       (h) 

 
Fig. 12. (a) Clean data and (b) noisy data. Denoised sections using (c) WT threshold, (d) 
sparse dictionary learning, and (e) multi-scale sparse dictionary learning. (f )-(h) Error 
sections corresponding to (c)-(e). This is “example 2” with time-variant data and the 
reflectors are the same as the case depicted in Fig. 9. 
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(a)              (b) 

 
Fig. 13. (a) The S/N of denoised results with iterations, the S/N of original data is 8.93. 
(b) The S/N of denoised results obtained by the three methods with different original S/N. 
This is “example 2”. 

 
 
 

Field data examples 
 
We first use a 2D seismic image shown in Fig. 14a to verify the 

proposed method. We add Gaussian band-limited noise to the section to 
make its S/N = 2.11 dB and display it in Fig. 14b. We use the three 
learning-based approaches to conduct denoising. In this example, we use the 
maximum filter size of 12×12 for sparse dictionary learning and run 20 
iterations for updating the dictionary. The denoised results and 
corresponding noise sections are shown in Figs. 14c-14f and 15a-15d, 
respectively. We note that the result obtained by sparse dictionary learning 
still retains much small noise (Fig. 14c), and the K-SVD method causes 
some signal leakage shown in Fig. 15b. DSD can remove noise thoroughly, 
however, we find many weak useful signals in the noise section (Fig. 15c). 
The result obtained by the proposed method is the cleanest one with the 
acceptable signals left in the noise section (Fig. 15d). 

 
Our second field data example is a 3D seismic image,  as shown in 

Fig. 16a. First, we divide the 3D seismic dataset into a series of 2D data 
pieces along inlines, then we apply the denoising methods to each 2D data 
slice. The maximum filter for sparse dictionary learning is 16×16, and 
dictionary update times are 20. We adopt 4-scale wavelet coefficients for 
multi-scale sparse dictionary learning denoising. The denoised results using 
sparse dictionary learning, K-SVD, DSD, and multi-scale sparse dictionary 
learning are shown in Figs. 16b-16d. We also extract profiles on the same 
crossline from Fig. 16, as well as their noise sections, and display them in 
Fig. 17. We note that the sparse dictionary learning and K-SVD method 
does not act well because some noise left in the shallow zones of denoised 
result  (Figs. 16b and 16c), especially for the top slice of the data cube in 
Fig. 16. The reason is that sparse dictionary learning and K-SVD treat some 
noise as useful information in the presence of complex structures and strong 
noise in the shallow zone. DSD can obtain clearer results, however, it 
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 removes some valuable events in the deep zones, especially for the 
rectangular regions marked in Fig. 17a. By comparison, the proposed 
method exceeds the above three methods. 
 
  

 

(a)        (b)      (c) 

 

 

(d)      (e)      (f) 

 
Fig. 14. (a) A real section and (b) noisy section of S/N = 2.11 dB. Denoised sections 
obtained using different approaches of (c) sparse dictionary learning, (d) K-SVD, (e) 
DSD, and (f) multi-scale sparse dictionary learning. This is “2D field data”. 
 

  
 We also compare the running time of sparse dictionary learning and the 
multi-scale sparse dictionary learning in dealing with the above synthetic 
and field data examples. We need to mention here that in our 3D example, 
we denoise the profiles along the crossline direction one by one, so we 
perform a parallel scheme in the program. Table 2 lists the running times 
taken by the four examples. We conclude that the proposed method is more 
efficient than direct sparse dictionary learning because WT decreases the 
size of data, resulting in a short running time of sparse dictionary learning. 
Owing to the fast WT transform, we can quickly decrease data amount 
without much price. In addition, the WT can help reduce the complexity of 
the original data. 
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(a)                        (b)              (c)   

 

 
 (d) 

Fig. 15. (a)-(d) Removed noise sections corresponding to Figs. 14(c)-14(f). This is “2D 
field data”. 
 

  
 
Table 2. Comparison of running time in seconds using different approaches. SDL 
represents sparse dictionary learning and MSSDL represents our multi-scale sparse 
dictionary learning. 
 

Data Points WT SDL MSSDL 
Example 

1 1001×50 0.43 19.85 14.01 

Example 
2 1001×50 0.46 19.44 18.37 

2D Field  1001×251 1.07 113.11 88.35 
3D Field 511×133×16 8.06 273.47 213.45 
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(a)       (b)        (c) 

 
(d)          (e) 

 
Fig. 16.  (a) A real noisy data, denoised sections obtained using different approaches of 
(b) sparse dictionary learning, (c) K-SVD, (d) DSD, and (e) multi-scale sparse dictionary 
learning. This is “3D field data”. 
 
  
 
DISCUSSION 

 
The sparse dictionary learning algorithm used in this paper makes up 

two processes: training the dictionary constrained by a data-driven tight 
frame and using it for sparse representation. When obtaining a filter matrix, 
the operator λτ  is a vital parameter to capture information from input data. 
On the one hand, small λ  results in in the insufficient information captured 
by the dictionary, on the contrary, large λ  results in no enough information 
learned from the seismic data. These two situations do not help get a 
reasonable tight frame. By numerical tests, we find that 4.5 to 5.5 times the 
variance of noise may be the right choice for λ  to achieve high S/N of the 
denoised result. Regarding the WT sparse coefficients, the variance of prior 
noise needs to be estimated. Comparing Fig. 2a with Fig. 2b, the 
frequency-band-limited noisy data have larger tolerance than white-noise 
data, thus, it can relax the accuracy of noise variance estimation. 
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 Seismic data suffer from the earth filtering, which results in the signals 
being time-variant, so we choose wavelet transform as a useful tool to 
accomplish time-variant signal analysis. Removing noise beyond seismic 
frequency band directly and learning dictionaries in remaining sparse 
coefficients are helpful to dictionary learning, we can decrease the effect 
from other frequency-band noise. Comparing Fig. 13a with Fig. 13b, we 
find that despite the same S/N for time-invariant and time-variant data, the 
convergence speed of time-variant data is slower than that of time-invariant 
data. Therefore, it is necessary to employ more iterations to update the filter 
matrix. 
 

,  
(a) 

 
(b) 

 
Fig. 17. Profiles of a same crossline. (a) Sections from the left to the right are the original 
data, denoising results using sparse dictionary learning, K-SVD, DSD, and multi-scale 
sparse dictionary learning, and (b) removed noise sections corresponding to these 
methods in (a). This is “3D field data”. 
 

 
We find from the numerical examples that wavelet transform with a 

threshold denoising method may not obtain a good result since the fixed 
wavelet base is not suitable for all seismic data characteristics. Regarding 
direct dictionary learning, its excellent denoising ability decreases when 
complex structures exist in seismic data and strong noise aliases in the 
signals. However, these drawbacks can be relaxed by the more robust 
multi-scale sparse dictionary learning. 
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 CONCLUSION 
 

We have presented a multi-scale sparse dictionary learning approach to 
remove random noise from the time-variant seismic data and discussed how 
to obtain suitable parameters involved in the algorithm. The proposed 
method achieves three advantages. First, through the wavelet transform, the 
sparse dictionary learning can easily capture the features of each sparse 
coefficient and represent the sparse coefficients by the corresponding 
learning-based dictionaries. Secondly, the wavelet transform and multi-scale 
sparse dictionary learning complete a multi-scale sparse representation 
conducive to the separation of noise and signals. Finally, the wavelet 
transform is a down-sampling process, which can reduce the dimensionality 
of data, thus making multi-scale dictionary learning more effective. By 
comparing the denoised results, we find that the wavelet transform with a 
threshold denoising method removes the noise but damages signals 
simultaneously since it does not take the characteristic of data into account. 
Direct dictionary learning and K-SVD might fail to describe complex 
seismic data efficiently. However, multi-scale sparse dictionary learning can 
separate signals from noisy data effectively for its multi-scale sparse 
strategy. 
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