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ABSTRACT 
 
Haritha, D. and Satyavani, N., 2022. Convolutional autoencoder neural network for 
seismic noise reduction. Journal of Seismic Exploration, 31: 267-278. 

            Seismic noise reduction is one of the main steps in the data processing sequence 
that aids in proper seismic imaging and interpretation. For the purpose of noise reduction 
and to recover weaker / masked signals, we propose the scheme of an unsupervised 
convolutional autoencoder neural network. Cross-entropy is used as the loss function in 
the network. The adaptive moment estimation plays the role of a backpropagation 
algorithm that can optimize the loss function. The key parameters of the network, like 
convolutional layers, filter size, and learning rate have been selected after performing a 
series of tests with different values for each of the parameters and those results are also 
presented here. We show that the present network applied to the seismic data shows 
improvement in the reflections and also allows us to recover some of the weaker / 
masked signals. The results show that the proposed method is successful in suppressing 
the noise and enhancing the seismic signals. 
 
KEY WORDS: seismic data, noise reduction, convolutional layers, filter size, 
    convolutional autoencoder. 
 
 
INTRODUCTION 
 
										Noise suppression generally leads to an increase in signal to noise 
ratio, thereby, improving the quality of the seismic image. The presence of 
an unwanted signal (noise) in pre-stack data affects the amplitude 
information, thereby causing problems in seismic processes like amplitude 
versus offset (AVO) studies (Li and Mallick, 2014), reverse time migration 
(RTM), full-waveform inversion (FWI) studies (Pratt, 1999) etc. The 
seismic noise also affects post-stack data, potentially leading to erroneous 
interpretation. In the last few decades, many conventional methods have 
been developed in processing  techniques  for  noise  reduction.  Some of the 
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methods were wavelet transform (Wu and Liu, 2008), f - x filtering (Harris 
and White, 1997), singular vector decomposition (SVD) (Bekara and van 
der Baan, 2007). These methods make use of spatial coherence of the data 
and improve SNR, thereby increasing the horizontal resolution, however, in 
the process, they reduce the tilt and the bending events. On the other hand, 
the median filters (Bednar, 1983; Duncan and Beresford, 1995) are helpful 
especially in eliminating peak noise in nonstationary signals. Of these two 
methods, the median filter is better in denoising and in attaining signal 
consistency. Both the methods are mostly based on empirical knowledge 
and therefore the selection of denoising parameter to suppress the noise 
plays a crucial role. If the parameters are not selected diligently, there might 
be a loss in signal content and/ or a regain of noise in the data (Wang et al., 
2017; Huang et al., 2017a; Zhao et al., 2019). As such, these methods 
addressing the issue of noise reduction still suffer from problems such as 
erroneous assumptions and inappropriate parameter settings. One possible 
solution for the above problem is Deep Learning (DL) because it is data 
driven and it does not require any prior knowledge. 
  
          Machine Learning (ML) can automatically build a model based on 
training data and can also improve the model based on training. DL methods 
build the model based on an artificial neural network, which helps to extract 
the high-level features from the data. DL is a subset of ML. ML is designed 
in such a way that it learns the features from the data, and it is mostly used 
in regression, prediction, and classification problems like facial recognition 
(Rowley et al., 1998), medical diagnosis (Kononenko, 2001), and in seismic 
exploration and interpolation. Artificial neural networks (ANN) are mostly 
used in seismic data processing techniques like event picking (Glinsky et al., 
1996), tomography (Nath et al., 1999) and in seismic interpretation facies 
classification (Ross and Cole, 2017) and fault identification (Huang et al., 
2017). 
 
           DL has gained incredible attention in solving geophysical problems 
like noise suppression in seismic images using the convolutional neural 
networks (Jain and Seung, 2009); Multilayer perceptron method to reduce 
the seismic noise (Burger et al., 2012); trainable nonlinear reaction-diffusion 
method to remove the Gaussian noise (Chen and Pock, 2017), etc. In 
addition, for general image noise suppression, denoising convolutional 
neural networks are proposed by Zhang et al., 2017. The convolutional 
neural network (CNN) is used to extract the important features from the 
images/ 2D data using the convolutional layers. CNN is gaining popularity 
in image processing, segmentation, and classification. The DL methods 
have achieved good results in terms of reduction in the Gaussian noise. If 
the noise is other than Gaussian, then the network performance is poor. 
  
          Seismic Denoising using DL can be carried out in two ways: 1. by 
supervised learning, and 2. by unsupervised learning. The supervised 
learning-based methods need large sets of clean data for labelling, which 
might not be possible always. On the other hand, the unsupervised learning 
method does not need clean datasets for labelling and can remove noise 
from corrupted seismic data. Supervised learning-based noise reduction 
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(Zhang et al., 2017; Chen et al., 2017) and unsupervised learning-based 
noise reduction (Gondara et al., 2016; Du et al., 2016; Chen et al., 2019; 
Song et al., 2020) both provide good results. In a nutshell, it may be said 
that both, Supervised and Unsupervised DL methods are useful in noise 
suppression problems, depending on the kind of datasets available to the 
user.    
                                                                                                                                                                                             
          In the present work, we have used an unsupervised algorithm because 
of the lack of training samples and also because it can automatically 
suppress the noise and reconstruct the signals from noisy seismic data. 
Convolutional autoencoder keeps the spatial information of the input image 
and extracts the information gently with convolutional layers without any 
loss of data. The autoencoder uses CNN to reproduce the input in the output 
layer. The convolutional autoencoder neural network is also used to 
attenuate the noise from seismic data. The proposed convolutional 
autoencoder method shows promising results in denoising of the seismic 
data. The seismic data from the Andaman Offshore region has been used in 
the present work. The seismic stack data used in this study is obtained from 
a complex geologic region and conventional processing could not bring out 
some of the subtle features (Satyavani et al., 2008). In the present study, we 
demonstrate that the present methodology can be used effectively to 
improve the seismic reflections and more importantly, retrieve some of the 
weak/masked signals. 
 
 
METHODOLOGY AND COMPONENTS OF THE PROPOSED 
NETWORK 
          
 Seismic data is a combination of signal and noise, and the recorded 
data can be mathematically expressed as below: 
 
           𝑆 = 𝑥 +  𝑁!    ,                                                            (1) 
 
where 𝑥 is the clean data and 𝑁! is the noise component. We aim to 
reconstruct the clean data (𝑥) from the contaminated seismic data (S). So, 
we design the model to map F: ( 𝑥 +  𝑁!) → 𝑥   . 
 
         Before constructing the model, we design the pre-processing steps for 
training and testing the datasets. We first normalize the contaminated 
seismic data using max-min normalization. We normalise the data to bring 
the different amplitude values into one scale because it helps the network to 
learn data quickly and converge faster. This normalised dataset adapts to the 
neural networks via: 
 
 
          𝑆⋆=(𝑆 −𝑚𝑖𝑛) (𝑚𝑎𝑥 −𝑚𝑖𝑛)    ,                                      (2) 
 
 
where 𝑆⋆ is the normalized data, max and min are maximum and minimum 
amplitude values of the seismic dataset. 
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Autoencoder 
         
 Autoencoder is a type of unsupervised artificial neural network that 
contains an encoder and decoder. Basically, in autoencoder, the input data is 
compressed into a lower dimension to extract the important features and 
then it is expanded to its original data size using a decoder. 
  
        The unlabelled input data will pass into the encoder, and it compresses 
the data into latent space representation expressed as follows: 
 
        𝑦 = 𝜎(𝑊!𝑆⋆ + 𝑏!)    ,                                                 (3) 
 
where σ is the non-linear activation function, 𝑦 is the lower-dimensional 
data after encoding. 
 
       The compressed data (𝑦) acts as input for the decoder which 
reconstructs the compressed data to the original input data dimension by 
inverse mapping. The reconstructed data (Z) expressed as follows: 
 
         Z = 𝜎(𝑊!𝑦 + 𝑏!)   .                                                          (4) 
 
𝑊! ,𝑊! 𝑎𝑛𝑑 𝑏!, 𝑏!  are the weights and bias in the network, respectively. 
𝑊!, 𝑏! are the weights and bias between the input and hidden layers, 
whereas 𝑊! and 𝑏! are in between the hidden and out layers.  𝜎 is defined 
as the activation function (Fig. 1). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.1. General architecture of convolutional autoencoder neural network. 
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Convolutional autoencoder neural network 
          
 Conventional autoencoder (AE) ignores the structural image 
information because the data in the network is in vector form. This can 
introduce parameter redundancy and forces the network to learn the global 
structure. So, it becomes difficult for AE to extract the hidden features of 
data (Zhang et al., 2019). Therefore, we have used a convolutional neural 
network, i.e., CNN with autoencoder (Fig. 1) which helps to extract the 
hidden features and reduce the noise in seismic data. 
  
        In general, the latent representation of the n-th feature map with 
convolutional layers can be represented as 
   

           𝑦! =  
𝜎 𝑊! ⊗ 𝑆⋆! + 𝑏! ,                      𝑛 = 1
𝜎 𝑊! ⊗ 𝑦!!! + 𝑏! ,        𝑛 ∈ (2,…𝑚) 

                                (5) 

 
 
where ⊗ denotes convolutional operator, m is the number of convolutional 
layers. 
    
         In general, the activation function is used to help the network to learn 
the complicated patterns in data and also it can increase the non-linearity 
into the network. Different types of activation functions are used in DL. We 
have considered a rectified linear unit (ReLU), 𝜎 𝑥 = max 0, 𝑥  as the 
activation function in hidden layers because it can solve vanishing gradient 
problem and also allows the model to learn faster (Krizhevsky et al., 2017). 
The Sigmoid function,  𝜎 𝑥 = 1 1 + 𝑒!!   acts as the activation 
functions in the output layer in our work.  
 
         Max-pooling layers are introduced in CNN to reduce the 
dimensionality of the data. The main advantage of using max-pooling is to 
speed up the calculation and prevent overfitting. In the present work, max-
pooling layers are added after each convolutional layer in the encoder part. 
The output generated from the max-pooling, producing the smallest 
dimension of the whole network in latent space, acts as input to the decoder 
part in the convolutional autoencoder. Using upsampling (inverse of max-
pooling) helps to reconstruct the compressed data into its original input size. 
 
       The final aim in neural networks is to decrease cost function/loss 
function/error function. The loss function is used to measure the 
performance of the network. During the optimization process, the model 
error is calculated by choosing a suitable loss function for the network. We 
have used cross-entropy (Kline et al., 2005) as a loss function in our 
network. To reduce the loss function, we have used the adaptive moment 
estimation (adam) (Kingma and Ba, 2014) as a backpropagation algorithm 
in our work. After obtaining the denoised image, we restore the amplitude 
back to the original by performing denormalization. 
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SEISMIC DATA AND THE NETWORK ARCHITECTURE 
	
									The marine seismic stack data from the Andaman offshore region 
(Fig.2) is used in our study and the dataset consists of CDP 380-1080 within 
the time of 1808-3400 ms, i.e, 700 traces and 796 time samples. Some of the 
events are blurred because of the noise in seismic data that could not be 
reduced by conventional processing. In the present study, we make an 
attempt to apply the CNN autoencoder network to this data to reduce the 
noise. Before training the dataset, we have normalized the seismic data 
using max-min normalization. Generally, the choice of CNN parameters 
dictates the quality of the seismic image and therefore, selection of the 
parameters is critical to CNN methods.  In our present study, selection of the 
parameters was done using a trial-and-error approach and we notice that the 
hyperparameters effecting the performance of our network are the number 
of convolutional layers and associated neurons, filter size and learning rate. 
For better noise suppression results, we have tested the each of these 
parameters sequentially using different sets of values and the results are 
summarised as follows: 
 
 

 
Fig. 2. Seismic stack image obtained from Andaman Offshore from conventional seismic 
data processing (modified after Satyavani et al., 2008).  
 
 
Convolutional layers 
 
           We first tested the number of convolutional layers that can provide 
improved images. Initially, we considered five convolutional layers with 
8,16,16,8,1 neurons in the respective layers for the network. This 
configuration leads to data loss (indicated with an arrow) as shown in 
Fig.3(b). We then increased the number of layers from five to seven with 
8,16,16,16,16,8,1 neurons and we observe that the noise is reduced 
(indicated as ovals) as shown in Fig. 3(c). We further changed the number 
of convolutional layers to nine with 8,16,16,16,16,16,16,8,1 neurons and we 
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observe that the data is attenuated, as shown by ovals in Fig. 3(d). Based on 
the above test results, we selected seven convolutional layers as the most 
promising for our network. Keeping the number of convolutional layers 
fixed at 7, we have sequentially changed the number of neurons within the 
convolutional layers by a trial-and-error method, from 8,16,16,16,16,8,1 
neurons to 64,16,16,16,16,64,1.  
	

 
Fig. 3. (a) Original Seismic image. (b) The seismic image obtained after using five 
convolutional layers with 8,16,16,16,16,8,1 neurons in the respective layers. The dotted 
ovals indicate that the signal loss in output data. (c) The seismic image obtained after 
increasing the number of convolutional layers to seven with 8,16,16,16,16,8,1 neurons in 
respective layers. The dotted ovals indicate that the data is denoised to some extent. (d) 
The seismic image obtained after increasing the layers to nine with 
8,16,16,16,16,16,16,8,1 neurons. The dotted ovals indicate the signal attenuation in 
denoised data.(e) The seismic image obtained after using seven convolutional layers with 
32,16,16,16,16,32,1 neurons in the respective layers. The arrow indicates the continuity 
of the event is improved in output data. (f ) The seismic image obtained after changing 
the configuration with 48,16,16,16,16,48,1 neurons in the respective layers. Weak 
signals recovery is indicated with red arrow and increase in the continuity of the events is 
marked with a black arrow. (g) The seismic image obtained after using seven 
convolutional layers with 64,16,16,16,16,64,1 neurons in the respective layers. The 
dotted ovals indicate that the signal loss in output. 
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 We notice that when the neuron configuration was kept at 
32,16,16,16,16,32,1 the continuity of event is improved as indicated with an 
arrow in Fig. 3(e) compared to the original data [Fig. 3(a)]. We have also 
observed the signal [Fig. 3(f )] which was earlier masked in noise and also 
an increase in the continuity of the events when the neuron configuration is 
kept at 48,16,16,16,16,48,1 in the convolutional layers. When the number of 
neurons was 64,16,16,16,16,16,1 we observed that there is a data loss, 
indicated with dotted ovals in predicted data as seen in Fig. 3(g). 
 
         Therefore, 48,16,16,16,16,48,1 neurons in convolutional layers are 
selected for our network as this configuration gives the best noise 
suppression result. We can see clear events in the denoised section shown in 
Fig. 3(f ). After fixing the convolutional layer values, we tested the filter 
size for our network. 
	
Filter size 
 
          The size of the convolutional filter also influences the denoising 
network. We have tested different filter sizes like 2*2, 3*3, 4*4 in our 
network for noise suppression. We have fixed the number of convolutional 
layers to seven with 48,16,16,16,16,48,1 neurons and then we have tested 
the filter sizes to achieve the best-denoised result. By employing the 2*2 
filter, most of the signals are attenuated along with the noise data and the 
resolution also is reduced (Fig. 4b). The 3*3 filter size achieves significant 
noise attenuation and brings out the subtle features in the seismic data 
[Fig.4(c)]. When we used a 4*4 filter size, the noise in raw data [Fig. 4(a)] 
is not suppressed [Fig. 4(d)] and hence it is discarded for our network. 
Therefore, we have selected a 3*3 filter as the filter size best suited for our 
network. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4. (a) Original Seismic image. (b) The seismic image obtained when using 2*2 filter 
size to our network. The dotted ovals indicate the events attenuation.	 (c)	The seismic 
image obtained after using a 3*3 filter size. The arrow indicates the subtle features in the 
seismic data.	(d) The seismic image obtained after increasing the filter size to 4*4. The  
dotted ovals indicate noisy events are not suppressed in output data and some of the 
signals are attenuated. 
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Learning rate 
 
         Learning rate (lr) is the hyperparameter that influences the network 
performance. The network cannot perform better if we select the learning 
rate poorly. We tested the performance of our network with different 
learning rates and observed the noise reduction patterns. When we tested 
our data with lr = 0.0001 and epoch 50, then the processing time for noise 
suppression is nearly 190sec and we notice some data loss. We changed the 
lr value to 0.009 with epoch 50, then the data loss is reduced. Further, we 
tested data with lr = 0.006 and epoch 50 then the network took 165 sec for 
processing and gave a slightly good result compared to the above result. We 
then changed the number of epochs from 50 to 55 with lr = 0.006, and we 
achieved a good result. After increasing the epochs from 55 to 60, we have 
not found any changes in data, and the output looks similar to the one 
achieved with 55 epochs. Therefore, we fixed epoch values for the network 
as 55. The performance of the network at higher speed and model stability is 
achieved at lr of 0.006. Based on the performance of denoising, we have 
selected the lr as 0.006 for our network. 
 
   
Role of parameters 

 
We have selected the specific parameters to our data based on the 

trial-and-error method. In our analysis, we have found out that the most 
important parameters which influence noise reduction are convolutional 
layers and filter size. When we decrease the number of convolutional layers 
and filter size, the signal is attenuated in the dataset. When we increase the 
convolutional layers and filter size, noise suppression doesn’t occur. 
However, the same is not to with the learning rate. We have observed that 
the learning rate does not bring much change in the noise reduction pattern 
compared to other parameters in the network. The parameters discussed in 
the above sections are applicable to the present dataset. However, we wish 
to mention that the parameters guiding the neural network depend upon the 
size and complexity of the dataset. Therefore, the parameters discussed in 
this section are unique to this particular dataset.  

 
 

RESULTS 
 
         We tested our method on seismic data from the Andaman offshore 
region (Satyavani et al., 2008) within the range of CDP380 to CDP1080 and 
time from 1808 to 3400 ms with different convolutional layers, filter sizes 
and learning rates. Based on the above test results, we have chosen a 
configuration of seven convolutional layers with a neuron distribution of 
48,16,16,16,16,48,1 in each layer. Max-pooling and Upsampling have been 
used after every convolutional layer to reduce and enlarge the dimensions of 
the data in the encoder and decoder part, respectively. The filter size of 3*3 
is selected for the present network as it shows improvement in noise 
reduction. The learning rate of our network is 0.006. After 55 epochs, the 
learned convolutional autoencoder neural network was able to regain the 
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test dataset dimensions successfully. Finally, noise attenuated seismic data 
(output from the network) is restored to its original dimension by de-
normalization. The output from the network shows significant noise 
reduction and recovery of some of the events. The initial seismic data is 
compared to the improved seismic data as shown in Fig. 5a and Fig. 5b 
respectively. In the denoised seismic data, the weak amplitude signals are 
recovered (indicated by red arrow) which were not seen in initial stack data 
because of the presence of noise (indicated by ovals in Fig. 5b). The seismic 
reflections are also showing increased continuity (indicated by black 
arrows) and amplitude enhancement compared to the original seismic data. 
We have also noticed that the background noise is significantly reduced in 
Fig. 5(b). Our results show that the proposed method achieves a good result 
in noise suppression, and we infer that this methodology with appropriate 
parameters can be applied for noise reduction of seismic data.  
	

	
Fig. 5. (a) Original Seismic image. (b) Seismic image obtained from the CNN network. 
The reduction in noise is indicated by dashed ovals. The weak amplitude signals that are 
recovered are indicated by the red colour arrow. The reflectors indicated by the black 
arrows show more continuity and amplitudes are enhanced than the original seismic 
image. 
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CONCLUSION 
             
 In the present work, we have proposed a convolution autoencoder 
neural network and also applied it to the seismic data from the Andaman 
Offshore region to reduce the seismic noise and improve the seismic image. 
The noise is attenuated using convolutional layers, max-pooling, and up-
sampling in the network. The hyperparameters like convolutional layers, 
filter size, and learning rate affects the noise reduction performance in our 
work. The obtained result demonstrates that the network improves seismic 
data quality considerably. The denoised result shows that our proposed 
method not only attenuates the noise in the seismic data but also recovers 
the blurred events from the contaminated data. The hyperparameters 
discussed in the present work are suitable for our dataset, however, they 
generally vary from dataset to dataset. 
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