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ABSTRACT 
 
Ding, Y., Li, Z.C., Zhang, K. and Sang, Y., 2022. Wavefield reconstructed least-squares 
reverse time migration based on stable pure qP-wave equation in tilted transversely 
isotropic media. Journal of Seismic Exploration, 31: 279-303. 
 
 The anisotropy of underground media is an important physical property that 
affecting the propagation of seismic wave. It generally exists in sedimentary strata. 
Therefore, this property should not be ignored in the process of exploration seismic 
imaging. Vertical transversely isotropic (VTI) hypothesis ignores the influence of 
original stratum tilt on anisotropy. Although it remedies the defect of acoustic hypothesis 
to a certain extent, it is difficult to accurately describe the propagation of seismic wave in 
most cases, leading to serious imaging footprints in reverse time migration (RTM) and 
least-squares reverse time migration (LSRTM) based on two-way wave equation. 
LSRTM can hardly eliminate them by iterations or denoising in frequency domain. 
Tilted transversely isotropic (TTI) pseudoacoustic equation is a strategy that can be 
considered, but the assumption that shear wave velocity is zero brings serious numerical 
errors to the coupled equation under complex anisotropic conditions. We use a stable 
pure pseudoacoustic wave equation to simulate wavefield in TTI media and apply it to 
LSRTM. On this basis, the wavefield reconstruction algorithm in TTI media is further 
derived to constrain the inversion process of LSRTM. Our algorithm can suppress the 
artifacts of high-order scattering wave, and accelerate the convergence of objective 
function. Experiments show that our method can achieve images with high 
signal-to-noise ratio (SNR) under TTI condition. 
 
KEY WORDS: tilted transversely isotropic media, least-squares reverse time migration, 
      wavefield reconstruction. 
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INTRODUCTION 

 
The research on seismic forward modeling and imaging is a process 

from simple hypothesis to complex hypothesis. The original seismic 
imaging technologies rely on acoustic approximation and ignore anisotropy. 
With the deep research and the improvement of computer power, 
anisotropic assumptions were introduced into seismic forward modeling. 
The current interest of research is mainly on the transverse isotropic (TI) 
media, it means that there is a two-dimensional plane in the elastic media, in 
this plane, the elastic properties remain unchanged. TI media can be divided 
into three categories: vertical transversely isotropic (VTI) media, horizontal 
transverse isotropic (HTI) media and tilted transverse isotropic (TTI) media. 
VTI and HTI are two simple descriptions of anisotropic properties. In VTI 
media, the isotropic symmetry axis is perpendicular to horizontal plane. 
Similarly, the isotropic symmetry axis in HTI media is consistent with 
horizontal direction. However, if the tilt of the symmetry axis is considered, 
such media is TTI, which are based on the most complex anisotropic 
hypothesis. The stiffness matrix describing TTI media shows the highest 
algebraic complexity. If the TTI impact on seismic modeling is not 
concerned, the image will fail to yield desired results and cause imaging 
footprints (Uhsenbach and Bale, 2009). 

 
Alkhalifah (2000) creatively realizes the qP-wave propagation in TI 

media by using acoustic approximation, which ignores the vertical S-wave 
velocity, and gives the dispersion equation of qP-wave. This research  
provides a theoretical guidance for anisotropic RTM using only P-wavefield. 
On this basis, many scholars have deeply studied the forward modeling of 
wavefield under anisotropic conditions. The initial pseudoacoustic wave 
equation is a fourth-order equation, which is difficult to calculate. In order 
to improve the calculation efficiency, Hestholm (2009) and Fletcher et al. 
(2008) have derived several forms of low-order coupled pseudoacoustic 
wave equations in VTI media using various order reduction methods, while 
Duveneck et al. (2008) derived formulas that are more suitable for the actual 
physical situation based on Hooke's Law and Newton's Second Law. Fowler 
et al. (2010) gave the general form of the second-order qP-wave equation in 
VTI media based on the above research results, confirmed the equivalence 
of such equations, and gave the second-order coupled qP- and qSV-wave 
equations in VTI media by ignoring S-wave velocity. The equation 
derivation in TTI media can follow the above method. For example, Zhou et 
al. (2006) and Fletcher et al. (2009a,b) gave the TTI qSV-wave equation 
based on the dispersion relationship, and Zhang et al. (2011) proposed stable 
TTI equations. Duveneck and Bakker (2011) rotated the stress and strain 
tensor to the local coordinate system aligned with TTI media, made full use 
of the simple and sparse form of local elastic tensor in VTI media, and 
obtained a stable coupling equation in TTI media. 

 
However, the above methods based on pseudoacoustic approximate 

still have defects. The main obstacles in imaging and inversion is the 
S-wave interference and numerical dispersion. Grechka et al. (2004) 
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confirmed that this artifact is caused by the pseudo shear wave generated 
when the shear wave velocity is artificially set to zero, and its wavefront 
presents the shape of a diamond. The above method also requires Thomsen 
parameters to meet the condition δε >  to make sure the stable propagation 
of qP-wave, which increases the instability of numerical calculation. 

 
The initial theoretical basis of the least-squares inversion was proposed 

by Tarantola et al. (1984). However, due to the limitation of computing 
resources, the development was quite slow for a long time. Lambaré et al. 
(1992) introduced the method of least-squares inversion into Kirchhoff 
migration, and was the first to realize the combination of least-squares 
inversion theory and seismic imaging. With the improvement of calculating 
speed and storage capacity, two-way wave migration represented by RTM 
has become a magnet for researchers. Combined with Tarantola's 
least-squares inversion theory and Lambaré's imaging framework, Dai and 
Schuster (2013) optimized RTM to LSRTM, strengthened the SNR and 
amplitude equalization of the results through iterations, and successfully 
applied it to the processing of 3D data through phase coding (Dai et al., 
2010). In recent years, many scholars have also studied LSRTM in complex 
media. Dai et al. (2015) implemented LSRTM based on viscoelastic media 
to compensate for phase distortion and energy attenuation caused by 
acoustic hypothesis. The results of the numerical test indicate that this 
algorithm has good effect in resolution enhancement and removing artifacts. 
Ren et al. (2017) proposed the LSRTM in elastic media, calculated the 
elastic demigration operator through Born approximation, and then used the 
Lagrange multiplier to obtain the adjoint equation in order to get the 
gradient to reflectivity. The final results show that this method reduces the 
dependence on initial speed and enhances the anti-noise ability. Considering 
the influence of anisotropy on the final imaging results, Huang et al. (2016) 
extended LSRTM to VTI media, and introduced the plane-wave coding 
strategy into the inversion framework to reduce I/O requirements and 
improve inversion efficiency. 

 
The main advantage of LSRTM is removal of low frequency noise. For 

high-frequency noise, such as high-order scattering artifact and multiple 
artifact, LSRTM is difficult to eliminate (Lin et al., 2020). Consequently, 
special methods need to be introduced to eliminate such interference. These 
high-frequency noises will cause errors in forward modeling. In order to 
suppress high-order scattering, wavefield reconstruction inversion (WRI) 
method can be introduced into LSRTM. This method is created by van 
Leeuwen and Herrmann (2013) to incorporate errors into inversion. WRI 
method can reform the objective function and update gradient by taking the 
wave equation as a constraint, optimize the inversion process to avoid the 
solution process plunging into local mínimum (Li et al., 2017; Lin et al., 
2018). 

 
This paper will first review the forward modeling basic theory of stable 

qP-wave equation, further introduce this method into LSRTM, and compare 
and analyze the influence of LSRTM methods based on different media 
assumptions on imaging in TTI media. Then, we will deduce the theoretical 
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framework of wavefield reconstructed LSRTM in TTI media, and take 
numerical tests to verify the validity of the method. 

 
 
 

THEORY 
 
Review of stable pure qP-wave equation in TTI media 

 
Alkhalifah (2000) derived the fourth-order qP-wave equation in VTI 

media under the acoustic approximation. Considering the difficulty of 
solution, the equation can be reduced to the first-order velocity-stress 
equation. When the isotropic symmetry axis tilts, that is, the media become 
TTI media, the first-order velocity-stress equation is too complex to be 
implemented by finite difference (FD) method. Therefore, the fourth-order 
partial differential equation (PDE) is reduced to the second-order coupled 
qP wave equation (Zhang et al., 2003). It has the advantages of simple form, 
easy implementation and convenient expansion to TTI media. 

  
The second-order qP-wave equation in TTI media is 
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where p and q are scalar wave fields, vpx and vpz are P-wave reference 
velocity in the x-direction and z-direction, respectively, and vpn is the 
P-wave NMO velocity. 
 

Because the general pseudoacoustic approximation directly sets the 
vertical component of shear wave velocity as 0, the influence of shear wave 
velocity on the FD process is ignored. This leads to serious numerical 
instability in the process of wavefield propagation when the model 
parameters are extreme. Considering this problem, a smaller shear wave 
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velocity can be introduced to constrain the FD process. The equation can be 
expressed as 
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The empirical formula can be represented as (Tsvankin, 2012) 
 

( ) σδε /−= pzsz vv   ,                      (5) 
 

where vsz is the vertical velocity component of shear wave, ε andδ are 
Thompsen parameters. σ  can be a constant of 0.9. 

 
The modified coupled equation can effectively suppress the numerical 

instability, but due to the assumption of S-wave velocity, there will be 
obvious S-wave front in the wavefield. If the S-wave velocity field is 
inconsistent with the P-wave velocity field in structure, or there is no 
effective S-wave energy in the field data set, such S-wave field is very easy 
to form crosstalk in the imaging results, and it is difficult to eliminate it by  
iteration in LSRTM. In order to solve the limitations in application of 
coupled equations, Zhan et al. (2012) derived stable pure qP-wave equation 
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(a)          (b) 

 

 
          (c) 
 
Fig. 1. Snapshots at 600 ms by (a) coupled qP-wave equation and (b) modified coupled 
qP-wave equation and (c) stable pure qP-wave equation. 
 
  

We take numerical tests to verify the stability of stable pure qP-wave 
equation in TTI media. The tests use temporal second-order and spatial 
twelfth-order FD scheme. We build a 301×301 homogeneous model with 
grid interval of 10 m both in x- and z-direction. The velocity,ε ,δ and 
polarization angle θ  of the model are 2000 m/s, 0.25, 0.2 and 45 degrees 
respectively. We choose Ricker wavelet to simulate the source, the main 
frequency is 25 Hz, and the location of source is at point (151,151). The 
wavefield propagation time is 700 ms and the time interval is 1 ms. Fig.1(a) 
is calculated by original coupled qP-wave equation, there is serious 
numerical instability in the snapshot, accompanied by obvious shear wave 
interference. Fig. 1(b) is calculated by modified qP-wave equation which 
introduce the assumed shear wave velocity into second-order equation. This 
equation eliminate the numerical instability but result in a shear wavefield 
that can not be ignored during forward modeling or imaging. The snapshot 
of Fig. 1(c) shows a single visible wave front without obvious shear wave 
interference. The P-wave simulated by stable pure qP-wave equation 
effectively meet the requirement of imaging. 
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(a) 
 

                              

(b) 
 

 

(c) 
 

                               

(d) 
  
Fig. 2. Hess TTI model: (a) velocity, (b)ε , (c)δ , (d) polarization angle θ .  
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We test the adaptability of the stable pure qP-wave equation and 
observe the phenomena when conducting forward modeling in complex 
models. A set of 1206×375 Hess TTI model (Fig. 2) is selected for 
numerical test. The horizontal and vertical grid interval is 10 m. The total 
propagation time is 2000 ms with time interval of 1 ms. The main frequency 
of Ricker wavelet is 25 Hz. We intercept the snapshots at 1000 ms and 1500 
ms in the two simulation methods respectively. Fig. 3(a) is a snapshot of the 
wavefield at 1000 ms using the coupling qP-wave equation. The wavefield 
at this time contains S-wave interference, and numerical instability can be 
observed locally. Fig. 3(b) shows the wavefield simulated by the same 
method at 1500ms. The numerical value is seriously unstable, and the order 
of magnitude reaches nearly 4000 times the effective wavefield, which has 
made the effective wavefield unable to be displayed. By comparing the 
above snapshots, Fig. 3(c) and Fig. 3(d) show good stability. There is no 
numerical instability and obvious S-wave interference in wavefield 
propagation, the order of magnitude basically remains stabilization. Such 
wavefield is more conducive to two-way wave migration. 

 
 

Anisotropic Born scattering 
 
In order to facilitate the derivation of scattering wave expression 

equation, we start from the stable pure qP-wave equation in time-space 
domain (Mu et al., 2020b): 
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where Pos represents the Possion operator, which is used to solve the 
adjoint wavefield of scalar wavefield p. indicates the source. 
 

If the contribution of anisotropic parameters to scattering is ignored 
(Dutta and Schuster, 2014), that is, only the velocity field is decomposed by 
Born approximation, the wave equation can be further expressed as 
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VP0 and VP refer to the background velocity field and disturbed velocity 

field respectively. 
 
The wavefield is linearized and decomposed into background wave 

field p0 and scattering wavefield (Mu et al., 2020a), and the equation is 
expressed as 
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is the definition of the scattering potential. We extract the equation of 
scattering wavefield 
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TTI-WRI-LSRTM 

 
Wavefield reconstruction inversion is actually a strategy of adding 

penalty terms to unconstrained optimization problems to make them contain 
constraint information. This strategy uses the wave equation itself as a 
penalty term to broaden the solution search space and accelerate the 
convergence of the inversion problem (Lin et al., 2018). We add the 
scattering wave equation in TTI media as a constraint to the objective 
function of LSRTM (theory of TTI-LSRTM is shown in Appendix A), the 
information of scattering wave is fully considered in the inversion problem 
so that the high-order scattering artifacts caused by high-speed body can be 
reduced. First, we take a review of conventional LSRTM objective function: 
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Considering the WRI inversion framework, the conventional objective 

function is extended, the scattering equation we derived is introduced as a 
constraint. The objective function is reconstructed to become a 2-norm 
function related to m and pS: 
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(a) 

 

                     
(b) 

 

 
(c) 

 

                              
(d) 

 
Fig. 3. Snapshots from modeling of Hess model: (a) at 1000 ms by coupled qP-wave 
equation, (b) at 1500 ms by coupled qP-wave equation, (c) at 1000 ms by stable pure 
qP-wave equation, (d) at 1500 ms by stable pure qP-wave equation. 
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the objective function can refer to Appendix B. 
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The new objective function contains two independent variables, which 

is not convenient to solve the gradient directly. Therefore, WRI can be 
mainly divided into two steps. The first step is to reconstruct the wavefield, 
and the second step uses the reconstructed wavefield to modify the gradient. 
Considering the linear relationship between the scattering wavefield and the 
scattering potential in the objective function, we gradually solve the 
reconstructed scattering wavefield by the following minimization problem: 
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For this objective function, if the model parameters are known, we can 
give an extended state variable 

 
 ( ) ( ) dPmApmAmA TT
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In LSRTM, the scattering wave is obtained by demigration, which is 
essentially the forward modeling process (Wang et al., 2016) by introducing 
the reflectivity. Therefore, we can assume that the source of demigration is 
the product of the reflectivity and the background wavefield. Based on this 
assumption, let the scattering wavefield be the sum of the source and the 
disturbance generated by the source, then expand the expression of the 
scattering wavefield 
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Substitute eq. (17) into eq. (16) to obtain 
 

( ) ( ) ( )
( ) ( )( ) ( ) 0

0
2,ˆ

pmmAmA

dpmmAtp
T

obs
T

s

xLL

Lxx
T

T

+−

+=

λλ

λλ   .                 (18) 

 
In this way, we can get the reconstruction equation of scattering 

wavefield. Then, we use the equation to modify the traditional LSRTM 
gradient to 
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After the improved gradient is obtained, we can adopt the conjugate 

gradient (CG) strategy (Nemeth et al., 1999) to gradually optimize the 
imaging results of LSRTM by iterations. Our workflow is shown in Fig. 4. 

 

 

 
Fig. 4. Workflow of TTI-WRI-LSRTM. 
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Based on the method above, we develop the code following the 

algorithm: 
 

 
TTI-WRI-LSRT 
_____________________________________________________________ 
 
Input: velocity model, anisotropic parameters, polarization angle and shot 
data 
Output: migration results after iterations 
Initialize the iteration counter iter = 0 
for iter < times of iterations 
   Set shot counter is = 0 
   for is < number of total shots 
      Set time counter it = 0 
      for it < total propagation time(forward) 

1.Forward modeling of wavefield by FD; 
2.Record wavefield at boundaries and save it in VRAM; 

it = it + 1; 
      end for 

Set time counter it = total propagation time 
for it < total propagation time(backward) 

1.Read wavefield at boundaries which is saved in VRAM;  
2.Load wavefield at boundaries to reconstruct ; 
3.Backward modeling of observed data; 
4.Calculate 	 by eq. (18); 
5.Reconstruct the scattering wavefield 	 by eq. (17); 
6.Calculate gradient and update the migration results; 

it = it + 1; 
      end for 
   is = is + 1; 
   end for 
   for is < number of total shots(demigration) 

for it < total propagation time 
   Calculate synthetic data 
it = it + 1; 

      end for 
   is = is + 1; 
   end for 
Calculate the misfit function 
iter = iter + 1; 
end for 
 
 

 
 
 
 

0p

sp̂
sp
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To analyse the feasibility at GPU setting, it is necessary to estimate the 
occupied space in VRAM. The required VRAM space of our method and 
conventional LSRTM is shown below assuming the model size nx×nz, total 
number of time points nt and number of shots ns: 

 
 

Table 1. VRAM space required in TTI-LSRTM and TTI-WRI-LSRTM. 
 

 TTI-WRI-LSRTM TTI-LSRTM 
Models 4×nx×nz×4B 4×nx×nz×4B 
Forward wavefield  6×nx×nz×4B 6×nx×nz×4B 
Backward wavefield 6×nx×nz×4B 4×nx×nz×4B 
Wavefield at 
boundaries 

2×nt×(2×nx+2×nz)×4B 2×nt×(2×nx+2×nz)×4B 

Intermediate space 
for reconstruction 5×nx×nz×4B 0 
Synthetic data 2×ns×nt×nx×4B 2×ns×nt×nx×4B 
Migration results 2×nx×nz×4B nx×nz×4B 
Total required 
memory (Example: 
Hess model in 
Figure 2, time points 
of 2800 and 100 
shots) 

2683M 2669M 

 
 
 
According to the example in Table 1, the proposed method needs about 

14M more VRAM space than the conventional method, and the VRAM 
requirements of both methods are significantly less than the maximum 
VRAM of the device we use. Therefore, we believe that such an increase in 
VRAM is acceptable for GPUs in most 2D cases. 

 
 

Numerical test 
 
We use the model with high-speed anomaly to carry out the numerical 

test. The first model is the Hess TTI model used above. We use this model 
to synthesize forward modeling records, conduct isotropic tests, VTI tests 
and TTI tests respectively, and observe the imaging results of different 
migration theories on observed data under TTI assumption. On the basis of 
TTI test, we continue to test WRI method to explore whether our method 
has practical effect on the imaging of high-speed anomalies and their 
surrounding structures. In addition, we test the field data of 2007 BP 
model(created by Hemang Shah and provided by BP Exploration Operation 
Company Limited) using TTI-LSRTM and TTI-WRI-LSRTM, and discuss 
the effect of this method on the actual data. 
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(a) 
 

 

                 (b)         
 

 

(c) 
 

                             

(d) 
 
Fig. 5. LSRTM results of  (a) isotropic P-wave equation,  (b)  VTI qP-wave equation, 
(c) TTI stable pure qP-wave equation and (d) TTI-WRI method after 20 iterations. 
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Fig. 5(a) is the result of LSRTM by isotropic P-wave equation. 
Because the shot record is simulated by anisotropic hypothesis, the isotropic 
equation can hardly propagate the observed wavefield backward accurately, 
resulting in low SNR of migration results. Such results are unable to 
effectively identify underground structures. Fig. 5(b) is the result of LSRTM 
by VTI qP-wave equation. Compared with isotropic migration, the accuracy 
and SNR of this result have been greatly improved, but there are still 
obvious artifacts in the region with large polarization angle [red box in Fig. 
5(b)]. By introducing the TTI stable qP-wave equation, the artifacts are 
significantly weakened [red box in Fig. 5(c)], but the high-order scattering 
artifacts are still difficult to eliminate due to the existence of high-speed 
bodies [blue box and yellow box in Fig. 5(c)]. On the basis of TTI stable 
qP-wave equation, we can better eliminate the artifacts caused by high-order 
scattering wave [blue box and yellow box in Fig. 5(d)] through the 
wavefield reconstruction algorithm, the resolution and SNR are obviously 
improved. 
 

 
Fig. 6. Reflectivity verse LSRTM results at distance = 3500 m.	

 
 
We extract the LSRTM data at distance = 3500 m for comparison 

(Fig.6). The isotropic results can hardly match the real reflectivity. The VTI 
results can roughly fit the real reflectivity at the upper part of the high-speed 
body, but due to enhancement of anisotropy, the imaging results in deep 
bear little resemblance to the real reflectivity. The LSRTM using TTI stable 
qP-wave theory shows good matching with the real reflectivity, but there is 
obvious high-order scattering artifacts between the depth of 700 m - 1000 m, 
and the resolution of the lower boundary of the high-speed body is also very 
limited. By introducing WRI theory, the optimized TTI-LSRTM enhances 
the SNR of imaging results and the resolution at the boundary of high-speed 
body, eliminates high-order scattering artifacts, and also improves the 
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imaging of structures under high-speed body. These improvements 
accelerate the convergence of residuals to a certain extent (Fig. 7). 

 

	
Fig. 7. Normalized residual curves of different migration methods. 
 
 

It must be admitted that TTI-WRI-LSRTM is computationally more 
expensive than conventional TTI-LSRTM. The main calculation of LSRTM 
is concentrated at the solution of the wave equation. Compared with the 
conventional methods, the increase of the calculation in wavefield 
reconstruction algorithm mainly lies in the process of using the forward 
operator to reconstruct scattering wavefield. 

 
 

Table 2. Run time of TTI-LSRTM and TTI-WRI-LSRTM. 
  

 TTI-LSRTM TTI-WRI-LSRTM 
Device NVIDIA Tesla K40c(12GB) 
Iterations 5 
Shots 100 
Run time(s) 20624 24708 

 
 
To compare the computational efficiency of TTI-LSRTM and 

TTI-WRI-LSRTM, we record the run time after 5 iterations. The GPU 
device is NVIDIA Tesla K40c (12GB). The same test parameters as that in 
TTI Hess model test are used. Numerical tests show that the proposed 
method is more time-consuming than the conventional method (Table 2). 
For the Hess TTI model with 456250 grid points, the calculation time 
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increase rate is about 19%. Although the calculation cost increases, the 
migration result is significantly improved compared with that of 
conventional method. We are also striving to explore other optimized 
algorithms to reduce computing costs. 

 
 

2007 BP Anisotropic model 
 
This model is a common data set used to test TTI related methods. We 

still use CUDA computing platform for numerical test. The GPU model is 
NVIDIA Tesla K40c and the VRAM is 12 GB. Because the finite difference 
method has strong restrictions on the time sampling interval and spatial 
interval, the time sampling interval is changed from 8 ms to 1 ms by 
interpolation. Therefore, considering the limited VRAM and calculation 
time, we select 80 shots between fldr = 580 and fldr = 659 and their 
corresponding parameter field (Fig. 8) for testing. 

 

 

  (a)                                   (b) 
 

 

   (c)                                  (d) 
 
Fig. 8. 2007 BP anisotropic model: (a) P-wave velocity, (b)ε ,  (c)δ  and  
(d) polarization angle θ . 
 

The results show that the improved method further suppresses the 
high-order scattering artifacts around the high-speed body compared to 
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TTI-LSRTM, especially at the upper part of it (Fig. 9). TTI-WRI-LSRTM 
also has distinct advantages over the TTI-LSRTM method in depicting the 
boundary of high-speed body. In order to further observe whether the 
TTI-WRI method enhances the continuity of events by suppressing 
high-order scattering, we zoom the rectangular area within distance = 
3450m - 4350 m and depth = 1875 m - 3387.5 m (Fig. 10). By the TTI-WRI 
method, the continuity of the events on the right side of the high-speed body 
is better than conventional TTI-LSRTM, which provides good data support 
for the identification of geological horizons. 

 

 

(a) 
 

                            

(b) 
 
Fig. 9. (a) TTI-LSRTM and (b) TTI-WRI-LSRTM results of 2007 BP anisotropic model 
after 5 iterations. 
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(a)                                  (b) 

 
 
 
Fig. 10. Enlargement of (a) TTI-LSRTM result and (b) TTI-WRI-LSRTM result within 
distance = 3450 m - 4350 m and depth = 1875 m - 3387.5 m. 
 
 
CONCLUSION 

 
In this paper, forward modeling tests are carried out to compare several 

propagation equations in TTI media. The stable pure qP-wave forward 
operator is selected as the propagator to realize TTI-LSRTM. By comparing 
the imaging results of TTI-LSRTM with isotropic LSRTM and 
VTI-LSRTM, the result of TTI-LSRTM matches better with the real 
reflectivity and has less artifacts. In order to solve the problem of scattering 
artifacts that is still existing in TTI-LSRTM, we derive the WRI algorithm 
of scattering waves in TTI media and apply it to LSRTM. Through the test 
of Hess model and 2007 BP field data, TTI-WRI-LSRTM shows a good 
ability for suppressing high-order scattering wave artifacts, and therefore 
accelerates the convergence of the objective function. Under the same 
number of iterations, the imaging result of TTI-WRI-LSRTM has higher 
SNR and resolution than that of the general TTI-LSRTM. 
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APPENDIX A 
 

The theory of wavefield backward propagation can be deduced from 
the adjoint state method (Plessix, 2006). We define the adjoint variable *p ,  
and the migration equation can be written as 
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where dadj represents the adjoint source, that is the residual between the 
simulated wavefield and the observed wavefield. 

 
The reverse time migration process of adjoint wavefield can be 

expressed in the form of gradient 
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Using the conjugate gradient algorithm, the update step length is 

calculated through the following steps 
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The gradient update equation is given 
 

kkk gmm α+=+1   .                         (A-7) 

 Using the Born approximation and ignoring the disturbance of 
anisotropic parameter field, we can decompose the velocity field and 
wavefield 

 

sVVV += 0    ,                         (A-8) 

sppp += 0     .                         (A-9) 
 
It is assumed that the source of the disturbance field is a combination 

of the background field and the migration result of last iteration, then we 
can derive the qP-wave demigration equation of TTI-LSRTM from the pure 
qP-wave equation in TTI media 

 

( ) 2
0

2

3
0

2

2

2

21
t
p

v
vpPosL

t
p

V
s

s
s

∂

∂
=⋅−

∂

∂
    .              (A-10) 

 

( )( )

( )( )

( ) ( )( )

( ) ( )( )

( )( ) 3

4
22

3

4
2

22

4
2

4

4
222

4

4
222

2cos23632sin
2
1

2cos2212sin2

2cos2212sin2

sin21cossin2

cos21sincos2

zx

zx

zx

z

x
L

∂∂

∂
−++−−−+

∂∂

∂
−+−++

∂∂

∂
−++++

∂

∂
+++

∂

∂
++=

θδεεδεεθ

θδεεεεθ

θδεεεεθ

θεεθδθ

θεεθδθ

 .    (A-11)

 

 
 
 
 
 
 
 
 
 
 
 
 



	 303 

 
 
APPENDIX B 
 

Combined with Tarantola's inversion method (2005), the basis of WRI 
theory is given here. Assuming that the model parameters are a-priori 
information, we can give the Gaussian distribution function of the wavefield 
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Similarly, the Gaussian distribution function can be given to represent 

the measurement error 
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Combining the probability density of measurement error and 

observation information, a posteriori state expression is given 
 

( ) ( ) ( )dfmdfm *|=φ    .                       (B-3) 
 
Ignoring the constant term, then we can get a maximum a posteriori 

probability estimate problema 
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Then the problem of solving the maximum probability density can be 
equivalent to the minimization problem in the form of eq. (14).  


