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ABSTRACT 

 Liu, W., Zhang, S.Y., Chen, K.F. and Li, S.X., 2022. Horizontal reassignment 
synchrosqueezing transform for time-frequency analysis of seismic data. Journal of 
Seismic Exploration, 31: 325-339. 

  
 The short-time Fourier transform (STFT)-based synchrosqueezing transform (FSST) 

is a special type of reassignment method that achieves a compact time-frequency 
representation (TFR) for a class of nonstationary signal. However, for the signals with a 
strongly varying instantaneous frequency, the FSST method is always not desirable. To 
address the problem, a new method, termed as horizontal reassignment synchrosqueezing 
transform (HRSST), is proposed in the paper. By means of an unbiased group delay (GD) 
estimation, the HRSST provides a sharped TFR for transient signals in which the 
time-frequency ridge is nearly parallel with frequency axis. Through synthetic data, the 
proposed HRSST method is determined to be an effective and robust tool which provides 
superior results over some classical TFA techniques such as STFT and FSST. Finally, 
two field examples are employed to further demonstrate its potential in time localization 
characterization and subsurface geological structures delineation with high precision. 
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 INTRODUCTION 

 
 Time-frequency analysis (TFA) always plays an important role in 

seismic data analysis (Castagna et al., 2003; Liu and Fomel, 2013; Chen et 
al., 2014; Liu and Chen, 2019; Liu and Duan, 2020). Over the past few 
decades, numerous TFA methods have been developed and widely applied 
in processing and interpretation of seismic data. The short-time Fourier 
transform (STFT) (Allen, 1977) and the continuous wavelet transform 
(CWT) (Sinha et al., 2005) are two commonly used TFR tools. The STFT 
implements Fourier transform with a sliding window to obtain a local 
time-frequency representation (TFR). However, such transform suffers from 
the Heisenberg uncertainty principle. Moreover, the STFT is sensitive to the 
selection of window function, that is, once the window is fixed, the 
time-frequency resolution is also determined. The CWT achieves a TFR 
with variable resolution with the help of a wavelet family. Unfortunately, 
the time and frequency resolutions cannot be simultaneously enhanced. 
Wigner-Ville distribution (WVD) (Jeffrey, 1999) makes a tradeoff between 
time and frequency resolutions, but the existence of cross-term interference 
limits time-frequency readability of seismic signal, and makes it challenging 
in real application. 

 
 In order to overcome above-mentioned problems, many efforts have 

been made to improve the time-frequency resolution. Auger and Flandrin 
(1995) introduced the reassignment method (RM) to sharp the TFR, in 
which it improves time-frequency energy concentration by transferring the 
time-frequency coefficients from the original position to the center of 
gravity of signal’s energy distribution in both the time and frequency 
directions. Nevertheless, the RM faces with the disadvantage, namely, it 
does not allow for signal retrieval. Recently, the synchrosqueezing 
transform (SST) as a sparse representation is proposed by Daubechies et al. 
(2011), which is based on wavelet transform and has a solid theoretical 
foundation. Besides, the SST is also an adaptive and invertible tool that 
enhances the readability of TFR by condensing the spectrum along the 
frequency axis (Herrera et al., 2014). The SST was originally developed in 
the field of audio processing as a post-processing technique (Daubechies 
and Maes, 1996). Thakur and Wu (2011) further extended 
‘synchrosqueezing’ idea to STFT and put forward the STFT-based SST 
(FSST). However, it is worth noting that both of the SST and FSST need 
meet the condition of weak frequency modulation hypothesis for the modes 
constituting the signal, which means that the two methods are unable to 
cope with the signals with strongly varying instantaneous frequency. To this 
end, Oberlin et al. (2015) attempted to establish the second-order 
synchrosqueezing transform (SST2) by a second-order local estimate of the 
instantaneous frequency. Afterwards, the SST2 was further generalized to 
the N-order version, called high-order synchrosqueezing transform, using 
higher order approximations both for the amplitude and phase (Pham and 
Meignen, 2017; Liu et al., 2020). 

 
 In this paper, we propose a novel TFA method, termed as horizontal 
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 reassignment synchrosqueezing transform (HRSST), which aims at the 

signals with a strongly varying instantaneous frequency. First, a signal 
model in the frequency domain is defined. Then, the group delay (GD) 
related with frequency is utilized to extract the ridge. Finally, the 
reassignment operation is utilized in order to rearrange the coefficients of 
STFT in the horizontal direction. 

 
 This paper is structured as follows: in Section Ⅱ, we recall some 

fundamental notation and definitions on STFT and FSST. Then, we present 
our technique, called horizontal reassignment synchrosqueezing transform 
(HRSST) in Section Ⅲ. Section Ⅳ delivers numerical results on both 
synthetic signal and field data, and compares the proposed HRSST method 
with standard STFT and FSST, which further illustrates the potential of 
HRSST in geological structures delineation and hydrocarbon-saturated 
reservoir identification. 

 
 

THEORETICAL BASIS 
 
Short-time Fourier transform (STFT) 

 
The Fourier transform of a given signal f  is defined as follows: 

     ( ) ( ) 2i t

R
f f t e dtπςς
∧

−= ∫   ,                          (1) 

 
where t and ς are the time and frequency variables, respectively. 
 

If f
∧

is integrable,  f  can be retrieved by: 

    ( ) ( ) 2i t

R
f t f e dπςς ς

∧

= ∫   .                           (2) 
 
It is well known that the Fourier transform ( )f ς

∧

 describes the 
frequency information of signal f  for the whole time, so that it is not 
suitable for depicting non-stationary signal where the frequency has the time 
localization. Thus, the short-time Fourier transform (STFT) was introduced, 
and the (modified) STFT of a given signal  f  is represented as: 

 
       ( ) ( ) ( ) ( )2*, i tg

f R
V t f g t e dπς τς τ τ τ− −= −∫   ,                (3) 

where g is a window function, *g  denotes the complex conjugate of g, 

( )
2

,g
fV t ς  is the spectrogram of signal  f . 

 
The original signal f can be reconstructed from its STFT using the 

following formula: 
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      ( )
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g
fR

f t V t d
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Note that g does not vanish and is continuous at 0. 
 
 
STFT-Based SST (FSST) 

 
Unlike RM, the key idea of FSST is to improve the time-frequency 

energy concentration by reassigning only the coefficients ( ),g
fV t ς  

according to the map ( ) ( ), , ,ft t tς ω ς
∧⎛ ⎞→ ⎜ ⎟

⎝ ⎠
. 

 
The frequency operator ( ),tω ς

∧

 that estimates the instantaneous 
frequency (IF) at time t  and frequency ς  is defined as: 

 

    ( ) ( )
( )
( )
,1 1, arg ,

2 2 ,

g
t fg

f t f g
f

V t
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i V t
ς

ω ς ς
π π ς

∧ ⎡ ⎤∂
⎡ ⎤= ∂ = ⎢ ⎥⎣ ⎦

⎢ ⎥⎣ ⎦
  ,        (5) 

 
where [ ]R •  denotes the real part of a complex number, t∂  represents the 
partial derivative with respect to time t. 
 

Thus, the FSST is defined by: 

     ( )
( )

( ) ( )
( ){ }, ,

1, , ,
0 g

f

g g
f fV t
T t V t t d

g ς ς λ
ω ς δ ω ω ς ς

∧

∗ >

⎛ ⎞= −⎜ ⎟
⎝ ⎠∫   ,          (6) 

 
where λ  is some threshold, δ  denotes the Dirac function, and ω  
denotes the frequency variable. 
 

 Finally, the mode fi (t) constituting the original signal f can be 
approximately recovered using the following formula: 

 

 ( ) ( )
( ){ },

,
i

g
i ft c
f t T t d

ω ω ϕ
ω ω

− <
≈ ∫   ,                     (7) 

 
where c is a compensation factor and ( )i tϕ  is an estimate for IF. 
 
 
HORIZONTAL REASSIGNMENT SYNCHROSQUEEZING 
TRANSFORM 
 

 It is noteworthy that the FSST is theoretically limited by the assumption 
of weak frequency modulation for the modes making up the signal. 
However, in real situation, most signals are composed of strong frequency 
modulated contents. Therefore, a new TFR method is required. 
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With regard to eq. (1), in the frequency domain, ( )f ς
∧

 can be further 

defined by: 

    ( ) ( ) ( )2if A e πψ ςς ς
∧

=   .                             (8) 

Then, the group delay (GD) can be written as: 

    ( ) ( )d
d
ψ ς

τ ς
ς

= −   .                            (9) 

According to Parseval’s theorem, the STFT in eq. (3) can be rewritten in 
the frequency domain as: 

 
    ( ) ( ) ( ) ( ) ( )2*1, ,

2
i tg G

f f R
V t V t F G e dπ ξ ςς ς ξ ξ ς ξ

π
− −= = −∫    ,   (10) 

 
where ( )F ξ and ( )G ς denote the Fourier transforms of signal f and window 
function g , respectively. 
 

One takes the partial derivative of ( ),G
fV t ς  with respect to t and ς , then 

the following equations can be obtained. 
 

       ( ) ( ) ( )
'

, , 2 ,G G G
f f fV t V t i tV tς ς ς π ς∂ = − −   ,        (11) 

       ( ) ( ), 2 ,G G
t f fV t i V tςς π ς∂ =   ,                    (12) 

 

where ( )
'

,G
fV t ς  and ( ),G

fV tς ς  denote the STFTs of ( )F ξ  with the 

windows 'G  and Gς , respectively. 

 

Next, the reassignment operators ( )
~

,f tυ ς  and ( )
~

,f tω ς  are respectively 

defined as ( ( ), 0G
fV t ς ≠ ): 
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And, the second-order local modulation operator ( )
~

,fq t ς  is defined by: 

        ( ) ( )
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~
~ ~
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,
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t
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   .           (15) 

Then, the second-order local GD estimate of signal f  is defined as: 
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( ) ( ) ( )
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      (16) 

where 
[ ]

( )
[ ]

( )
2 2^ ~
, ,f ft R tυ ς υ ς

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
 is the estimated GD. 

 
Finally, the horizontal reassignment synchrosqueezing transform (HRSST) 

is expressed as: 

      

( )
( )

( )
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( ){ }
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, * ,
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where γ  is the threshold. 

Furthermore, the inverse Fourier transform can be performed to retrieve 
the mode. 

    ( ) ( )( )1
, ,G

HRSST fR
f t F T t dtς
∧

−= ∫   ,            (18) 

where ( )1F − •  denotes the inverse Fourier transform. 

 
 
SYNTHETIC DATA 

 
This section presents a synthetic signal, shown in Fig. 1, to illustrate the 

improvements brought by HRSST in comparison with the conventional 
STFT and FSST methods. The corresponding TFRs of the STFT, FSST, and 
HRSST are displayed in Fig. 2(a)-(c). It can be found that the TFR result 
from the STFT suffers from a poor time-frequency resolution due to the 
fixed window. Comparing with Fig. 2(a), one notices that the FSST 
provides a relatively nice TFR result. However, for the signals with a 
strongly varying instantaneous frequency, both STFT and FSST fail to give 
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 a desired result. In contrast, the HRSST shows a clearly sharp TFR, 

especially in the time direction, which is more helpful for feature extraction 
of the strong frequency modulated signals. In order to clearly compare the 
performance of the aforementioned methods, we enlarged some areas 
indicated by the rectangles in Fig. 2, which are depicted in Fig. 3. One can 
clearly see the advantage of the HRSST in enhancing the energy 
concentration is highlighted in the time direction, which provides the 
potential in delineating thin-bed for seismic interpretation. 

 
 For a better understanding of the improvements brought by the use of 

HRSST, we will compare more quantitatively the three methods in terms of 
the sharpness of the representation. Herein, the Renyi entropy is utilized to 
evaluate the performances of the STFT, FSST and HRSST methods, and a 
lower Renyi entroy means a more energy-concentrated TFR. The 
corresponding Renyi entropy is listed in Table 1. It can be observed that the 
HRSST has the lowest Renyi entropy, that is, it can achieve the most 
energy-concentrated TFR. The Renyi entropy can be expressed as: 

 

      
( )
( )

2

2

3

2

,1 log
2 ,

R

R

T t d dt
I

T t d dt

ς ς

ς ς

⎛ ⎞
⎜ ⎟= −
⎜ ⎟
⎝ ⎠

∫∫
∫∫

   ,                 (19) 

where ( ),T t ς  denotes the TFR result. 

 
 
Fig.1. A synthetic signal. 
 
 
 
Table 1. Renyi entropy of the STFT, FSST and HRSST methods. 

 
TFA STFT FSST HRSST 

Renyi 
entropy 

16.0669 14.5289 10.8801 
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              (a)                                 (b) 

 
(c) 

Fig. 2. Time-frequency maps obtained by STFT (a), FSST (a) and HRSST (c), 
respectively. HRSST achieves a highly concentrated TFR. 
 

  
             (a)                                   (b) 

 
(c) 

 
Fig. 3. Local enlarged time-frequency maps corresponding to Fig. 2. The HRSST (b) can 
generate the more energy-concentrated TFR compared with the STFT (a) and FSST (b) 
methods. 
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 REAL EXAMPLES 

 
DataⅠ  

 
 We first apply the STFT, FSST and HRSST methods on a real seismic 

data (Fig. 4), which is comprised of 150 traces with 500 samples per trace 
and a sampling interval of 2 ms.  Now, we take the trace 60,  shown in 
Fig. 5(a), as an example to show the TFRs corresponding to the 
above-mentioned transforms. The result of STFT displays that there are 
three obvious spectral energies, however, it fails to accurately detect the 
time of occurrence owing to the poorer time-frequency resolution [Fig. 5(b)]. 
Both of the FSST and HRSST results exhibit the relatively sparser 
representation. The difference is that the FSST, squeezing the 
time-frequency coefficients in the frequency direction, enables the 
time-frequency energy to spread along the time direction, so that it is 
difficult to capture the time when the spectral energies appear (Fig. 5(c)). 
The HRSST makes time-frequency energy concentrated in the time 
direction. In this sense, it is more beneficial for identifying these existing 
spectral energies accurately, and thus facilitating further seismic 
interpretation [Fig. 5(d)]. 

  
Next, we extract the 40 and 55 Hz frequency slices after applying the 

STFT, FSST and HRSST techniques. As reported in Fig. 6, the STFT 
cannot extract the stratigraphic information effectively due to the influence 
of time-frequency resolution. The spectral energy from the FSST and 
HRSST is much sparser than that from the STFT; however, the FSST does 
not produce a desired result because of the poor time resolution resulting 
from time-frequency coefficients reassignment in the frequency direction. 
For the HRSST method, it provides much sparser outputs and depicts the 
spectral characteristics of seismic reflections more clearly, which is always 
very important for thin-bed identification. 

 

 
 
Fig. 4. A field data. 
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(a) 

 
(b) 

 
(c) 

 
 

(d) 
 
Fig. 5. Trace 60 from Fig. 7(a), and the corresponding time-frequency maps obtained by 
STFT (b), FSST (c) and HRSST (d). 
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                (a)                         (b) 

  

                (c)                          (d) 

  

                (e)                           (f ) 
 
Fig. 6. 40 Hz frequency slices using STFT-based method (a), FSST-based method (c), 
and HRSST-based method (e). 55Hz frequency slices using STFT-based method (b), 
FSST-based method (d), and HRSST-based method (f). The HRSST shows the higher 
time resolution than the STFT and FSST methods. 
 
 
DataⅡ  

  
In this section, a real field data including gas-filled sand is employed to 

further demonstrate the effectiveness of the HRSST in detection of 
hydrocarbon. The dataset consists of 60 traces, the record length is 1 s, and 
the time sampling interval is 2 ms. The gas-filled reservoir is indicated by a 
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 black arrow (Fig. 7) where the seismic trace 20 passes vertically. As shown 

in Fig. 8(a), there is the obvious strong amplitude around 4s. The TFRs 
obtained by the STFT, FSST and HRSST are displayed in Figs. 8(b), 8(c) 
and 8(d), respectively. It can be clearly observed that all TFRs exhibit some 
similar feature, namely, the strong spectral energy exists at 4s. The FSST 
and HRSST show more characteristics than the STFT because of the higher 
time-frequency resolution of both methods. However, the HRSST does a 
better job accurately describing the instant when the strong spectral energies 
occur. 

 
Fig. 9 shows the resulting common frequency slices for STFT (a) (b), 

FSST (c) (d), and HRSST (e) (f) at, respectively, 20 and 40 Hz. A fixed 
window size makes the STFT show the lower time-frequency resolution. 
The low-frequency anomaly is more sharply represented by FSST and 
HRSST than in the STFT maps. The FSST and HRSST have similar 
performance, that is, the low-frequency anomaly is apparent near the 
gas-bearing reservoir at 20 Hz, and then the energy is faded at 40Hz. But the 
HRSST seems to be more able to characterize the exact location of the 
anomaly owing to higher time resolution, which is helpful to depict the 
location and extent of the gas-charged sand reservoir further. 
 
 

 
 
 
Fig.7. The post-stack data 

Reservoir 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
 
Fig. 8. Trace 20 from Fig. 7(a), and the corresponding time-frequency maps obtained by 
STFT (b), FSST (c) and HRSST (d). 
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 (a)                                 (b) 

  
               (c)                                 (d) 

  
               (e)                                 (f ) 
 
Fig. 9. Constant-frequency slices. (a) (b) The STFT outputs for 20 and 40 Hz, 
respectively. (c) (d) The corresponding results estimated by FSST. The HRSST outputs 
are shown in (e) (f ). The HRSST shows the higher time resolution than the STFT and 
FSST methods, and it is beneficial to characterize the exact location of the anomalies. 

 
CONCLUSIONS 

 
 In this paper, we proposed a new technique, called HRSST, for seismic 

time-frequency analysis. The proposed HRSST uses a signal model in the 
frequency domain, and makes full use of the unbiased group delay 
estimation to replace the traditional instantaneous frequency calculation, 
which greatly enhances the time localization. The synthetic data shows that 
the HRSST achieves a highly energy-concentrated TFR for the signals with 
a strongly varying instantaneous frequency compared with the STFT and 
FSST approaches. Field examples further indicate the potential of our 
method in subsurface geological structures delineation and low-frequency 
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 anomaly detection, which renders that the HRSST is promising for seismic 

data analysis. Future work will devote to the behavior analysis of the 
HRSST when applied to noisy signals and the influence of noise on the 
reassignment operators. 
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