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ABSTRACT 
 
Mirzakhanian, M. and Hashemi, H., 2022. EEI attributes for fluid discrimination using 
fuzzy labeled multiclass support vector machine. Journal of Seismic Exploration, 31: 
375-390. 
 
 In exploration seismology, automatic seismic facies analysis to discriminate 
different facies and fluid content is an essential task to reduce future drilling risks. There 
are different seismic attributes as learning features and various learning methods for 
automatic seismic facies analysis. Previous studies have proved that selecting efficient 
seismic attributes is more crucial than the learning method. Therefore, it is logical to pay 
more attention to the choice of proper attributes. The extended elastic impedance (EEI) 
attributes belong to prestack seismic attributes, and they are functions of compressional 
velocity, shear velocity, density, and chi angles. The Chi angle is the virtual incident 
angle and changes between -90 to +90 degrees. 
  
 The innovative method demonstrates the role of fluid replacement modeling 
(FRM) for the supervised selection of EEI attributes at suitable chi angles as input 
features to train an intelligent model for the discrimination of reservoir fluid contents. 
 
 The method starts with FRM to model different fluid contents of the reservoir 
(100% brine, 100% oil, and 100% gas) using borehole data. Then, efficient EEI (Chi) 
logs are selected according to the results of the EEI template analysis. Thus, EEI seismic 
attributes at selected Chi angle are calculated from prestack seismic data by amplitude 
versus offset (AVO) analysis and EEI inversion. Then, labeling of the EEI attributes is 
performed by fuzzy c-mean clustering (FCM). By considering membership functions, a 
fuzzy concept is an appropriate tool for soft clustering and an appealing method for 
seismic interpretation. Afterward, a classifier model of the multiclass support vector 
machine (SVM) is trained using the fuzzy labeled samples to predict the fluid type of 
unseen data.  
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 The method was applied to a 3D prestack seismic data of an oil sand reservoir in 
the Persian Gulf to predict the fluid distribution map at the top of the reservoir. The 
reservoir contains a considerable amount of gas cap. Only one borehole data drilled in the 
oil column is available for FRM and fluid EEI template analysis. The available fluid 
distribution map confirms the accuracy of the resulted fluid distribution map based on the 
modeling of all the wells in different locations of the reservoir. This confirmation proves 
the application of the proposed method in fluid pore identification. 
 
KEY WORDS: seismic facies analysis, fluid discrimination, extended elastic impedance,  

     fuzzy clustering, multiclass support vector machine,  
    fluid replacement modeling. 
 
 

INTRODUCTION 
 
 In recent years, different intelligent systems were introduced in the 

petroleum industry to perform seismic facies analysis and reservoir 
characterization. They are powerful tools for extracting quantitative relations 
between seismic attributes as input data and seismic facies as output data. 
Despite their low resolution, the seismic data is used for quantitative 
reservoir analysis because of their areal coverage (Chopra and Marfurt, 
2007). So, one of the significant issues in evaluating a reservoir is linking 
seismic data with the well data's petrophysical properties using intelligence 
systems. Several works have been conducted using different learning 
methods to predict characteristics of the reservoirs and seismic facies 
analyses using seismic attributes (Hashemi et al., 2008; Na'imi et al., 2014; 
Hashemi and Beukelaar, 2017; Wang et al., 2017; Wrona et al., 2018; Zhao, 
2018). The biggest challenge in seismic interpretation is the discrimination 
of different fluid contents and their spatial distribution (Sharifi and 
Mirzakhanian, 2019). Previous studies have proved that for robust and 
reliable reservoir characterization, selecting appropriate seismic attributes is 
more important than the learning algorithm (Barnes, 2007). Also, according 
to Barnes and Laughlin (2002), the performance of a learning algorithm 
decrease by increasing the dimensionality of input features. Therefore, it is 
logical to pay more attention to selecting appropriate and efficient attributes. 
Various methods have been employed to select seismic attributes or input 
features for learning systems (Bagheri et al., 2013; Mardan et al., 2017; 
Hadiloo et al., 2018; Shang et al., 2019). Extended elastic impedance (EEI) 
analysis is one of these methods which can provide prestack seismic 
attributes with a strong link to a particular reservoir property  (Whitcombe et 
al., 2002; Mirzakhanian et al., 2015; Samba et al., 2017; Sharifi et al., 2019; 
Sharifi and Mirzakhanian, 2019; Mirzakhanian and Hashemi, 2022a-2022b). 

  
 The fuzzy systems are applicable to deal with uncertainty and 
inaccuracy by considering membership functions for input samples. Some 
researchers have discussed the application of soft computing and fuzzy 
concepts in geophysics and quantitative seismic facies analysis (Aminzadeh 
and Winkelson, 2004; Aminzadeh and de Groot, 2004; Aminzadeh and de 
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Groot, 2006; Hashemi, 2010, 2012; Hadiloo et al., 2018; Mirzakhanian and 
Hashemi, 2022b). 

  
 In this paper, the fluid replacement modeling (FRM) is performed to 

select efficient seismic attributes in a supervised manner for automatic 
identification of fluid distribution map. In previous studies, selecting seismic 
attributes for facies analysis was an unsupervised approach (Mardan et al., 
2017; Zhao et al., 2010; Shang et al., 2019). Hence, fluid replacement 
modeling is carried out to build three saturation scenarios in terms of pore 
fluid types (gas, oil, and brine) to select the most efficient EEI attributes. 
The most differentiated EEI attributes at certain Chi angles are chosen 
according to the results of EEI changes pattern for each saturation scenario 
(fluid EEI template analysis). Then, AVO analysis and EEI inversion are 
performed on prestack seismic data according to the outcome of fluid EEI 
template analysis to prepare certain EEI attributes maps for the top of the 
reservoir. Afterward, the fuzzy c-mean (FCM) clusters the selected samples 
of prepared EEI maps into three segments. This is followed by training a 
support vector machine (SVM) classifier, according to the SVM advantages 
in classification (Wrona et al., 2018; Nishitsuji and Exley, 2019), to predict 
the unseen data. 

  
 In the proposed method, there is no need to use unsupervised feature 
selection methods such as attributes cross-correlation, principal component 
analysis (PCA), Fisher discriminant analysis (FDA), etc. Also, only one well 
with density, compressional, and shear velocity data is used for fluid EEI 
analysis as a feasibility study to select the efficient EEI attributes. In this 
study, the reservoir is considered homogeneous for simplification. It is worth 
noting that rock-physics modeling is applicable if needed to model the 
heterogeneity of a reservoir. Also, in cases with more boreholes available, it 
is recommended to use all the wells data to perform EEI analysis. 
  
 This methodology is employed on a 3D prestack seismic data 

belonging to an Iranian oil field in the Persian Gulf. For confidential issues, 
only one borehole data with shear velocity is available for FRM and EEI 
analysis. To choose the optimum SVM kernel, the validity and calculation 
time are analyzed for each kernel. The accuracy of the fluid map obtained 
from the proposed method is validated by a fluid spatial distribution map 
based on the modeling of all available wells. 

  
 
 

THEORY AND METHOD 
 

 Whitcombe (2002) introduced REEI (χ) or EEI reflectivity as a 
modified two-term linearized Zoeppritz equations (1919) as the following: 

 
                    R!!" χ = 𝐴 𝑐𝑜𝑠 𝜒 + 𝐵 𝑠𝑖𝑛 𝜒     , (1) 
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where A and B are intercept and gradient. The chi angle (χ) is a theoretical 
incident angle that changes between -90 and 90 degrees. By introducing 
some reference constants, he obtained the normalized dimensionless 
impedance values for all 181angles. Therefore, a new-scaled formula 
equivalent to the EI (Connolly, 1999) is developed for a new parameter 
called the EEI spectrum. 

 
EEI(χ) = 𝑉! 𝜌 (!!

!!
)!(!!

!!
)!( !

!
)!      ,  (2) 

where  

𝑝 = 𝑐𝑜𝑠 𝜒 + 𝑠𝑖𝑛 𝜒, 𝑞 = −8𝐾 𝑠𝑖𝑛 𝜒, and 𝑟 = 𝑐𝑜𝑠 𝜒 − 4𝐾 𝑠𝑖𝑛 𝜒 ,𝐾 = !!
!!

!
.  

 
 EEI analysis by computing the impedance values beyond the 

physically observed range of incident angles is beneficial for discriminating 
different lithologies and fluid types (Whitcombe et al., 2002; Mirzakhanian 
et al., 2017; Yenwongfai et al., 2017; Sharifi et al., 2019). Connolly (2017) 
indicated equivalent chi angles and the weighting of different relative rock 
properties for a set of elastic properties. Later on, Sharifi and Mirzakhanian 
(2019) innovated Full-angle extended elastic impedance to indicate fluid 
type in a carbonate reservoir by rock physics templates. 

  
 Different rock physical modeling techniques have been presented 

based on theoretical, empirical, or hybrid models (Kuster and Toksöz, 
1974a,b; Xu and White, 1995; Mavko et al., 2009; Saberi et al., 2009; Xu 
and Payne, 2009). For fluid replacement modeling, the initial set of 
velocities (compressional and shear) and density data corresponding to a 
rock having an initial fluid content are used to compute the velocities and 
density data of the rock with another type of fluid. Often these initial data 
sets are measured from the well logs or theoretical models (Avseth et al., 
2006). 

   
 The fuzzy version of the k-means algorithm is introduced as FCM as 

an unsupervised method in pattern recognition and soft data clustering. The 
fuzzy techniques by using membership functions for each sample of data 
improve the certainty of clusters (Hashemi, 2012). The data samples 
separate into overlapping groups according to the membership degrees to 
better describe data structure. Therefore, the results of soft clustering 
methods are more real compared to the hard clustering methods (Bora and 
Gupta, 2014). Shape, volume, and the number of clusters are crucial issues 
for FCM. The optimum number of clusters is indicated according to the 
general knowledge of the interpreter about data structure and the assessment 
of some validity indices. The support vector machine (SVM) is a supervised 
machine learning approach to perform classification and regression tasks by 
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generating an optimal separation between two classes with maximum 
margin. SVM as an effective classifier proposed based on structural risk 
minimization to reduce classification risk and present a more efficient 
classification (Tomar and Agarwal, 2015; Salimi Sartakhti et al., 2018; 
Wrona et al., 2018; Nishitsuji and Exley, 2019). Using SVM over other 
approaches is a simpler and more efficient algorithm. However, it suffers 
from drawbacks such as sensitivity to noise and outliers, an, unbalanced 
dataset and high computational time. But, various modifications have been 
carried out in SVM to overcome the drawbacks above (Li et al., 2015; 
Khemchandani et al., 2016). The SVM is a global solution to classify the 
data patterns of different classes and is inherently a well-known technique 
for binary classification. But, researchers successfully have extended it to 
the multiclass problem (e.g., Tomar and Agarwal, 2015; Khemchandani and 
Sharma, 2016; Wrona et al., 2018). The database is further segmented into 
training and testing data sets to evaluate classification. In learning 
algorithms, the training data is used to construct the classifier, while the 
testing data is employed for its evaluation. 

 
 This study evaluates the role of supervised selection of EEI attributes 

for fluid identification using FCM clustering and SVM classification.  
Fig. 1 presents the flow diagram of the study. 
  

 
CASE STUDY 

 
 The presented method is applied to prestack seismic data belonging to 

an oil field in the Persian Gulf. The 3D seismic survey covers approximately 
240 km2. The final processed bin spacing is 12.5 x 12.5m. The sample rate 
for the data acquisition is 4ms. The maximum offset is almost 3000m with 
the angle coverage 0f 30 degrees at the studied time interval. Data quality is 
generally good over the entire time range without strong multiple 
interferences. The field is an anticline with northwest-southeast trending. 
There are more than thirty drilled wells around the field area. The reservoir 
consists of up to 100 m of loose sands, with interbedded shale, dolomite, 
dolomite ,cemented sandstones and nodular anhydrite, with an oil column of 
about 44 m and 18 m gas cap. For this study, only a small portion of seismic 
data is present. Only one well data (A-01) with shear velocity is available 
(due to the confidential issues) to perform fluid replacement modeling and 
fluid EEI template analysis. The authors have access to the fluid map 
modeled according to the all wells data around the anticline to validate the 
method. The locations and geology markers of two other wells, one in gas 
(A-02) and the other in the oil column (A-10), are also available but not their 
logging data. A seismic section that crosses these three available wells is 
present in Fig. 2. The sandstone reservoir is limited between two blue 
interpreted horizons. The gas-oil contact (GOC) at the well A-02 and oil-
water contact (OWC) at the wells A-01 and A-10 are also indicated in the 
seismic section. 
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Fig. 1. The workflow of the proposed methodology. 
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Fig. 2. An arbitrary seismic section of the field. The reservoir is located between two blue 
horizons. The base map shows the full coverage of seismic data. The blue points 
represent well locations. The dotted square indicates seismic data available for this study, 
and the black line shows the arbitrary line path on the map. 

 
 
 

RESULTS 
 

Fluid replacement modeling (FRM) 
 

 To analyze the variations of EEI versus chi angles under different 
scenarios (fluid EEI template), fluid replacement modeling (FRM) is 
performed in the reservoir interval using the A_01 data drilled in the oil 
column. The reservoir consists of unconsolidated sands with intervals of 
shale and dolomite. For FRM, mineral types and their volume fractions are 
taken from the petrophysical interpretation and core data. Then, the results 
combine using Hashin-Shtrikman's average (Mavko et al., 2009; Rein, 2015) 
to obtain elastic parameters of the solid rock matrix. Petroleum engineering 
reports and well tests provide pore fluid properties (e.g., gas-oil-ratio, 
salinity, etc.). Then, the fluids' elastic properties are modeled, and different 
phases are mixed using Wood's model, considering a homogeneous 
reservoir. Finally, as an essential parameter of Gassmann's equation (1951), 
the frame modules of dry rock are derived using measured velocities, density 
and porosity logs, and Gassmann theory. Fig. 3 shows the result of fluid 
replacement modeling for the reservoir interval along well A-01. The figure 
indicates that the modeled and measured data have been similar enough to 
validate the FRM results. 
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Fig. 3. Measured well log data (blue) and predicted data (red) along unconsolidated 
reservoir at A-01. Track 1 shows the measured and modeled density. P- and S-wave 
velocities are shown along tracks 2 and 3, respectively. The total porosity log is present 
along track 4. 

 
 

 
 

 
Fig. 4. Original and FRM data along the reservoir of the well A-01. Track 1 shows 
density logs for original data and three scenarios of fluid saturation (brine, oil, and gas). 
Related P-wave and S-wave velocities are shown along tracks 2 and 3, respectively. 
Track 4 shows Vp/Vs ratio logs for different scenarios. As the reservoir is oil saturated 
initially, the modeled data is more similar to the oil saturated scenario logs at the upper 
part of the reservoir. However, by increasing the depth and percentage of water 
saturation, the modeled data is more similar to the brine saturated scenario logs. 
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EEI analysis 
 
 In this step, fluid replacement modeling is compared to the measured 

data to validate the results. The results confirmed that the well log data are 
adequately sensitive to fluid type and saturation changes in the reservoir. 
Therefore, the EEI spectrums related to each saturation scenario (original, 
100% oil, 100 % gas, and 100% brine) are built in the reservoir interval 
using calculated logs by FRM and eq. (2) (Fig. 5). 

 
  

 
 
 

Fig. 5. EEI spectrum for different scenarios (original, 100% oil, 100% gas and 100% 
brine) using eq. (2). The color scale indicates EEI values at different depth and chi 
angles. The different EEI spectrum for different scenarios is clear. 

 
 
  Then the EEI logs at the top of the reservoir are extracted from each 

EEI spectrum for EEI template analysis. EEI data for different fluid contents 
plots versus chi angles in a single cross-plot (Fig. 6). Because the well A-01 
has been drilled in an oil-saturated zone of the reservoir with low percentage 
of water saturation (avg. 10-20%), the EEI trend of the original scenario 
resembles the curve for the fully oil-saturated scenario in the fluid EEI 
template. 

  
 According to Fig. 6, EEI values for different fluid scenarios at most of 

the Chi angles, except at 55 degrees, are different. It indicates the efficiency 
of EEIs as prestack attributes to discriminate fluid content. According to the 
EEI template analysis, two chi angles 90° and +90°) are chosen. As it is 
clear, at –90°, the value of EEI for the gas scenario is more than two other 
scenarios, and at +90°, the values of the brine scenario are the most. EEI 
(+90) is representative of the gradient. So, these two EEI logs/attributes 
provide efficient input features for the learning algorithm for this case. The 
selection of more angles only increased the run time with no further 
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improvement in the algorithm. Accordingly, angle +45° as the representative 
of Vp/Vs is not selected due to the similarity of its relative values to values 
of +90°. 

 

 
 
 

Fig. 6. EEI values changes from -90° to +90° of Chi angle for the different scenario of 
fluid type at the top of the reservoir calculated by the well A-01 data. Since the well A-01 
has been drilled in the oil, the trends of EEI for the oil scenario and the real one are 
almost similar. Black arrows indicate angles –90°, +45° and +90°.  

 
    
EEI inversion 

 
 After selecting proper EEI attributes, the EEI reflectivity cubes are 

built having intercept and gradient from AVO analysis [eq. (1)] at these two 
certain angles. Furthermore, well to seismic correlation, low-frequency 
modeling and wavelet extraction convert each EEI reflectivity into elastic 
impedances. 

  
 A synthetic seismogram is generated by convolving the extracted 

wavelet with a time-reflectivity series derived from the well log data to 
improve well tying. Next, the time-depth relation is optimized according to 
the correlation coefficient between real seismic and the synthetic seismic 
data along the well path. Then, a low-frequency model is built based on the 
well logs and interpreted horizons to compensate for the deficiency of low-
frequency information in seismic data. Finally, EEI inversion is performed 
on each EEI reflectivity using model-based inversion. The outputs of the 
inversions are EEI cubes at two selected angles [i.e., EEI (–90°) and EEI 
(+90°)]. For more details of EEI inversion, readers are recommended to 
study Whitcombe (2002), Sharifi et al. (2019), and Sharifi and Mirzakhanian 
(2019). 
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Preparation of input features  
 
 In this step, EEI amplitude maps related to the top of the reservoir are 

prepared (Fig. 7). Then, adequate samples from different reservoir locations 
are selected as input features for FCM clustering from those two maps. Each 
cluster represents one fluid type (i.e., gas, oil, or brine). Therefore, there is 
no need to employ and assess different validity indices to select the number 
of clusters before fuzzy segmentation. The output of this stage is fuzzy 
labeled data with two learning features as input for SVM classification.  

 
 

 
 

 
Fig. 7. EEI changes amplitude map for two Chi angles selected according to fluid EEI 
template of different saturation scenarios. The EEI template is created based on rock-
physics modeling and FRM.  

 
  
  
SVM classifier  

 
 The prepared data in the previous session is provided to SVM 

classifiers learners in Matlab (2021a) to detect fluid types. To evaluate the 
accuracy of classifiers, the data is further segmented into training and testing 
data sets using K-fold. In the K-fold validation technique, the data is divided 
into ten subparts of the same size and dimensions (10-fold), and ten 
iterations of the cross-validation process are performed. In each iteration, 
one fold is used as testing data while the other remaining forms the training 
data. The accuracy is computed for each iteration, and the absolute accuracy 
is obtained by averaging the accuracy of all cycles. 
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 Different multiclass SVM classifiers with different kernels using one 
versus one approach are employed. The accuracy and calculation time for 
each one is presented in Fig. 8. According to this figure, SVM with a linear 
kernel provides the admissible accuracy results in an acceptable running 
time. Therefore, the linear SVM model with one versus one approach is 
finally selected to predict unseen data. 

  

 
 

Fig. 8. Overall accuracy and calculation time for different multiclass SVM classifiers to 
discriminate fluid types. 

 
 

DISCUSSION  
 
 In this case study, The FRM results are used to select certain angles of 

the EEI spectrum as seismic attributes (fluid EEI template analysis). The 
elastic parameters of the reservoir are modeled using only the well A-01 
data. By replacing different fluid types (using Gassmann's equation), the 
behavior of each fluid scenario is modeled and presented in the fluid EEI 
template (Fig. 6). The EEI template helps select limited but efficient seismic 
attributes in a supervised manner. 

  
 EEI attributes maps related to the top of the reservoir are extracted 

from prestack seismic. The maps are segmented into three clusters using 
FCM clustering. The seismic data is inherently degraded with some range of 
noise and uncertainty. In addition, the fluid contents of the reservoir change 
gradually, and the fluids' boundaries are not crisp. For such cases, fuzzy 
concepts and soft computing are more practical. 

  
 The segmentation is performed on only a tiny part of the available 

data. Then, SVM classification is applied to the fuzzy segmented data. 
According to the analysis of different multiclass SVM classifiers and the 
results of figure 8, the linear SVM model is trained and used to predict 
unseen data, considering the trade-off between time and accuracy. The 
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predicted fluid map using the SVM classifier is present in Fig. 9. To evaluate 
the privilege of the presented method, we have compared the results with a 
fluid distribution map prepared by modeling all the productive wells around 
the studied area. The similarity of these two fluid maps is addressed in this 
figure. The high degree of correlation between these maps indicates the 
enormous potential of the proposed method in fluid discrimination using 
proper EEI attributes. The minor differences between these two maps are 
due to undershooting areas. Two other wells, A-02 and A-10, located in the 
gas and the oil part of the reservoir, respectively, are present as witnesses to 
validate the resulted map. For confidential issues, we do not have access to 
the location of other wells. Seismic data coverage is considerably higher 
than the sparse well data sets. Therefore, the map resulting from the 
proposed method has a higher resolution between boreholes than the map 
from borehole modeling. 

 
 The most significant advantage of the innovative method is that the 

feasibility study and analysis of seismic attributes can be performed using 
only one well data. This is a vital issue in a reservoir's exploration and 
development phases with limited numbers of drilled wells. 

 
 

 
 

 
 
Fig. 9. Spatial discrimination map of different fluids at the top of the reservoir based on 
well data modeling is present on the left side to compare with the map resulting from the 
presented method (right side). The slight difference between the two maps is due to 
undershooting areas (gray polygons). In addition, the spatial resolution of the map 
resulting from seismic data between boreholes is more than the map created from sparse 
well data modeling. 
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CONCLUSION 
 
 The paper presented a new workflow to generate fluid maps for a 

clastic reservoir from seismic data using an integration between EEI 
attributes, fussy clustering, and SVM algorithm using FRM. Here, an 
innovative approach has been taken to use EEI template analysis for fluid 
discrimination. Seismic attributes in learning methods are more crucial than 
classifiers. So, there has been a special focus on selecting proper seismic 
attributes. For this purpose, a feasibility study was performed by fluid 
replacement modeling and fluid EEI template analysis to select efficient EEI 
attributes. The equivalent EEI maps were extracted from prestack seismic 
data and were segmented into three clusters (i.e., brine, oil and gas) using 
FCM. Then, a multiclass SVM classifier was trained to predict the unseen 
data. 

  
 The map from this workflow was comparable to the map from the 

modeling of all the wells around the studied oil field, confirming the 
proposed method's efficiency and validity. Only one borehole data was 
available for fluid EEI template analysis and EEI attribute selection step in 
this study. So, this approach could be of high importance in the exploration 
oil fields with a limited number of wells available. This method can be used 
for any geological formation after FRM and EEI analysis feasibility study. It 
is worth mentioning that rock-physics modeling helps analyze EEI trends in 
similar cases with limited boreholes available. For case studies with more 
boreholes, it is highly recommended to use all the wells available to improve 
the selection of efficient EEI attributes. 
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