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ABSTRACT 
 
D.W. Lee, S.P. Choi, J.H. Lee and W.K. Chung. Efficient seismic numerical modeling 
technique using the YOLOv2-based expanding domain method. Journal of Seismic 
Exploration, 31: 425-449.  

 
 Wave equation-based seismic modeling has the advantage of simulating the exact full-
wave propagation. However, it requires a great amount of computational resources, which 
becomes prohibitive when both the modeling domain size and the number of the time samples 
increase. Therefore, much research has been performed to enhance the computational efficiency 
of seismic numerical modeling. The expanding domain method is such one technique that 
improves the computational efficiency by identifying the domain extent where the wave 
propagation has not reached and excluding these domains from the calculation. In this work, we 
propose a new deep-learning based method that guide the determination of the computational 
domain. In order to establish the computational domain where the wave propagates from the 
snapshots, the deep learning-based object detection was employed. The deep learning object 
detector used has two main components. The first one is a structure for the feature extraction 
layers based on ResNet-50. The second one is a structure for the detection of the wave 
propagation domain based on the You Only Look Once method, version 2 (YOLOv2). After the 
training, validation and test for the YOLOv2 object detector, the computational efficiency of our 
proposed method was compared with that of the widely used amplitude comparison-based 
expanding domain method. It was demonstrated that the computational efficiency of the 
YOLOv2 method was better when the number of modeling grids was large, and the efficiency in 
the largest number of grids was about 25.1 %. 
 
KEY WORDS: seismic numerical modeling, computational efficiency, 
       expanding domain method, deep learning object detection, YOLOv2. 
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INTRODUCTION 
 
 Seismic numerical modeling is a technique used to simulate wave 
propagation in various types of geomedia (Drossaert and Giannopoulos, 
2007). This technique has been used not only for predicting physical 
phenomenon but also for seismic data analysis and synthetic data 
acquisition (Ramsden et al., 2005; Etgen and O’Brien, 2007). Furthermore, 
it is used as a forward modeling tool for requiring full-waveform 
information during the seismic imaging such as full-waveform inversion and 
reverse-time migration. In seismic modeling, various types of wave 
equations, such as acoustic and elastic, can be applied depending on the type 
of data acquired from the seismic exploration and also the characteristics of 
the area where the exploration was performed. To perform seismic 
numerical modeling, many numerical methods have been introduced, 
including the finite difference method (Vireux, 1986; Levander, 1988), 
staggered-grid finite difference method (Graves, 1996; Özdenvar and 
McMechan, 1997), finite element method (Santos et al., 1988), and spectral 
element method (Komatitsch and Tromp, 1999). To simulate wave 
propagation more accurately, many seismic numerical modeling studies 
considering various types of parameters have been reported (Carcione et al., 
1988; Robertsson et al., 1994; Alkhalifah, 2000; Carcione et al., 2002; 
Fowler and King, 2011). Although the wave equation-based seismic 
numerical modeling has the advantage of simulating full-wave information, 
it requires a great amount of computational resources (Petrov and Khokhlov, 
2014). And, when both the spatial extent of modeling and the time sample 
increase, there is a computational prohibitive. In order to enhance the 
computational efficiency, various model methods have been proposed such 
as graphics processing unit (GPU)-based seismic modeling with reverse-
time migration (Abdelkhaleck et al., 2009); Laplace-domain modeling and 
inversion using a logarithm grid technique (Ha and Shin, 2012); efficient 
wave equation-based seismic modeling using a neural network (Siahkoohi et 
al., 2019); and the expanding domain method (EDM) (Suh and Wang, 
2011). 
 
 Among many methods, EDM enhances the computational efficiency 
by skipping computation of the domain where the wave does not propagate 
at an early time. Therefore, in the EDM, the determination of the domain 
extent where the wave propagates is important. Suh and Wang (2011) have 
reported three different strategies to identify the relevant propagation area in 
time domain: the method of constant velocity layer, solving the eikonal 
equation, and amplitude comparison. Among these three methods, it is 
shown that the method of amplitude comparison can define the 
computational domain as compact as the eikonal method can do, with a 
negligible computing overhead (Suh and Wang, 2011). The efficiency of the 
amplitude comparison method depends on various modeling parameters, 
including the model size, recording time, velocity model, and source and 
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receiver geometry (Ryu et al., 2015). Since the seismic modeling is 
performed on the area where the wave is propagating, one expects that the 
amplitude comparison method loses its computational efficiency when the 
downgoing size increases. In other words, If the processing time for 
amplitude comparison method becomes comparable to the time saving by 
the domain reduction, the EDM is no longer beneficial. 
  
 Recently, deep learning techniques have been applied actively in 
geophysics to solve various problems (Wang et al., 2019; Yang and Ma, 
2019; Jun et al., 2020; Kim et al., 2020; Vrolijk and Blacquière, 2021). 
Deep learning is a part of machine learning that uses many layers of 
artificial neural networks (NNs), i.e., successive simple nonlinear functions, 
performs complex tasks by learning the weights of NNs from the data. 
(Chassagnon et al., 2020). Various deep learning models and techniques 
have been developed for various applications in geophysics (Pochet et al., 
2018; Li et al., 2019). Object detection is one such technique that separates 
the object from the background, derives its location, and classifies it 
(Szegedy et al., 2013). Three types of object detection series have been 
reported: region-based convolutional neural network (Girshick et al., 2014; 
Girshick, 2015), single-shot multi-box detector (Liu et al., 2016; Womg et 
al., 2018), and You Only Look Once (YOLO, Redmon et al., 2016; Redmon 
and Farhadi, 2017; Redmon and Farhadi, 2018). Among these objective 
detection methods, we focused on the YOLO series due to its superiority 
and popularity. The YOLO is the method of predicting the location and 
class of the object by looking at an image once, like its name. In particular, 
the YOLO method is the object detector for real-time image processing. In 
2017, Redmon and Farhadi proposed YOLO version 2 (v2), which has an 
improved detection speed and accuracy compared to the previous version. 
  
 In this paper, we propose an efficient seismic numerical modeling 
method by combining both the YOLOv2 method and the EDM. Once 
trained, the YOLOv2 method was able to define the computational domain 
much faster than the amplitude comparison method. In particular, the 
computational efficiency did not decrease even in a spatially large model. 
The organization of this article is as follows: in the Theory section, 
YOLOv2 object detection and amplitude comparison method are presented 
in detail along with computational efficiency analysis. In the Methods 
section, we describe our deep-learning method architecture and specific 
configurations such as dataset generation, data labeling, training, validation, 
and detector testing. In the Numerical Examples section, we confirm the 
performance of the proposed method by comparing with the computational 
efficiency of the amplitude comparison method through numerical 
examples. The experiment compared the computational efficiency of the 
seismic numerical modeling with various sizes of velocity models, each 
with different grid sizes. Consequently, it was confirmed that the efficiency 
of YOLOv2 method was better than the amplitude comparison method 
under various grid modeling conditions. 
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THEORY 
 
Expanding Domain Method (EDM) 
 
 The 2D acoustic wave equation in the time domain performed to 
simulate the propagation of acoustic waves is as follows: 

1
𝑐!(𝑥, 𝑧)

𝜕!𝑃(𝑥, 𝑧, 𝑡)
𝜕𝑡!

= ∇!𝑃 𝑥, 𝑧, 𝑡 + 𝑓 𝑡 𝛿 𝑥 − 𝑥! 𝛿 𝑧 − 𝑧!     , (1) 

 
where 𝑐  is P-wave velocity, 𝑃  is the scalar pressure wavefield, 𝑓  is 
source wavefield, and 𝑥!  and 𝑧!  are source positions of x- and z-
direction, respectively. In the initial time step of seismic modeling, most of 
the wavefield in the time domain has a value of zero except near the 
location of the source. And the EDM reduces the computation time by 
skipping the computation of the domain where the wavefield is zero thus 
numerical computation is not needed. Fig. 1 shows the wavefield snapshots 
at t = 0.8 s that were obtained by time domain modeling with homogeneous 
medium; these images briefly explain the concept of the EDM. In general, 
when solving the acoustic wave equation to simulation wave propagation as 
in Fig. 1, discretization and numerical computation of the partial differential 
equation (PDE) solution are performed typically on the whole domain (the 
yellow dotted box in Fig. 1). 
  

 

Fig. 1. The wavefield images of seismic numerical modeling in the time domain using 
the constant velocity (1500 m/s) model at an early time step (0.8 s). The red line 
indicates the computational domain, and the yellow dotted line indicates zero area. (a) 
Typical numerical modeling; (b) Numerical modeling using the expanding domain 
method. 
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  The PDEs over the whole domain should be computed at every time 
step. Note that adaptive mesh refinement strategies (Tang and Shao, 2013) 
where the mesh can be refined around the wavefront may be applied to 
lessen the computational burden by coarsening the mesh around the 
locations far away from the sources, however, the implementation of the 
adaptive mesh refinement to existing forward wave simulation solvers can 
be time-consuming and also require overhead costs of remeshing in each 
timestep. On the other hand, EDM can eliminate the need for whole domain 
modeling and adaptive mesh refinement by considering the smaller domain 
in which the wave propagation is computed (the red box shown in Fig. 1). 
  
 The most important factor for successful EDM implementation is the 
selection of the appropriate computational domain. There are three types of 
EDMs using constant velocity layer, eikonal equation solver, and amplitude 
comparison (Suh and Wang, 2011). In the method of the constant velocity 
layer, the traveltime of the wave is defined under the assumption that the 
velocity model is simplified by having a constant velocity. This method is 
simple and fast to identify the wave propagation domain; however, its 
accuracy can be diminished when the velocity model is complex. Solving 
the eikonal equation is the traditional way of the traveltime calculation 
(Vidale, 1990) and the determination of the wave propagation domain with 
the eikonal equation can provide a comparatively compact domain size, 
while solving the eikonal equation can be computationally expensive. 
 
 Unlike the two methods previously mentioned, the amplitude 
comparison method defines the nonzero wave domain without calculating 
the traveltime. Instead, the computation boundary is updated and follows the 
wavefront by comparison with the maximum amplitude of the wavefield in 
each time step. Suh and Wang (2011) have demonstrated that the amplitude 
comparison method using 1/1024 of the maximum amplitude of the 
wavefield snapshot as the threshold produces a nearly similar computational 
domain to that produced from the eikonal equation solver-based method 
with less computational cost. However, in this study, we use 1E-6 for the 
maximum amplitude of the wavefield snapshot as the baseline for the 
amplitude comparison method for more accurate computational domain 
selection. 
 
 
Expanding Domain Method (EDM) 
 
 The computational efficiency of the amplitude comparison 
expanding domain method (AC-EDM) depends on various modeling 
parameters such as the acquisition geometry, recording time, velocity 
model, and model size (Ryu et al., 2015). Among them, the model size is a 
critical parameter since the AC-EDM becomes inefficient as the model size 
becomes large. To confirm this, we compared the computation time of 
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seismic numerical modeling with and without the AC-EDM with respect to 
the model size, and analyzed the computational efficiency of the AC-EDM. 
The second-order finite difference method was used with the non-reflecting 
boundary condition (Cerjan et al., 1985) for the time domain modeling. The 
Marmousi-2 benchmark model (Martin et al., 2006) was used as the velocity 
model for this experiment shown in Fig. 2. The Marmousi-2 benchmark is 
the 17 km long and 3.5 km deep velocity model with 13601 (length) × 2081 
(depth) grids with a uniform grid size of 1.25 m. In addition, we created 
coarse grid velocity models from the Marmousi-2 benchmark with a grid of 
2.5 m, 5 m, and 10 m (Table 1) to investigate the performance when the 
resolution of the snapshots was improved to check whether the AC-EDM 
operates normally at the other resolution. The sampling time intervals in 
each of the four numerical modeling environments were determined by the 
grid size of each case, as shown in Table 1. 
 
 
Table 1. The seismic numerical modeling parameters of four cases using the Marmousi-2 
p-wave velocity model.  

 
 
 
 In terms of the acquisition geometry, a source was located at a 
distance of 8.5 km and a depth of 20 m below the sea level, and receivers 
were located at all points of the grids at 20 m below the sea level. The 
recording time was 5.7 s. The computational efficiency was calculated as 
follows: 

𝐶𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 % =  
𝑇!"# − 𝑇!"#

𝑇!"#
×100, (2) 

 
where 𝑇!"#  is the computation time of modeling without the EDM 
(reference modeling), and 𝑇!"# is the computation time of modeling using 
the EDM. In this section, 𝑇!"# corresponds to the computation time of the 
AC-EDM. 

Modeling parameters Case 1 Case 2 Case 3 Case 4 

Grid size 10 m 5 m 2.5 m 1.25 m 

Number of grids 1701 × 351 3401 × 701 6801 × 1401 13601 × 2801 

Sampling time interval 1.5 ms 0.75 ms 0.375 ms 0.1875 ms 
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Fig. 2. P-wave velocity with the Marmousi-2 model. 

 
 

All of these numerical modeling runs were implemented in MATLAB 
performed on a workstation equipped with an Intel Core i9-10980XE CPU 
(18 cores) at 3.70 GHz and 128 GB RAM. The results of the computational 
experiments through this simple numerical example are shown in Table 2. 
The results are the mean of three measurements. Note that the 
computational efficiency of the AC-EDM decreased as the model size 
increased. This result is due to the algorithmic aspect of the AC-EDM, 
which examines the amplitude values from the wavefronts at each time step 
and when the discretization grids become finer, the overhead cost of 
determining the correct boundary size surpasses the computational gain in 
the modeling. 

 
 

Table 2. The computation time and efficiency of four seismic numerical modeling cases 
using the amplitude comparison expanding domain method (AC-EDM). 
 

Modeling method Case 1 Case 2 Case 3 Case 4 
Computation time 
for Reference 
modeling1) 

3 min 9 s 25 min 5 s 3 h 20 min 30 s 1 d 2 h 37 min 
7 s 

Computation time 
for AC-EDM 
modeling2) 

2 min 36 s 23 min 7 s 3 h 25 min 38 s 1 d 4 h 11 min 
4 s 

Computational 
efficiency 17.5 % 7.8 % - 2.6 % - 5.9 % 

 
1) seismic numerical modeling without the expanding domain method, and 2) amplitude 
comparison expanding domain method. 
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YOLOv2 object detector 
 
We confirmed the computational efficiency of the AC-EDM. Using the 

EDM, it seems that the efficiency should be improved as the modeling 
domain increases, however, the opposite result was confirmed by using the 
AC-EDM. This is because the calculation to ascertain the computational 
domain requires a lot of time. We expected that the modeling efficiency 
could be improved by using a pre-trained deep learning tool to determine 
the computational domain. Among the various deep learning methods, we 
applied the deep learning-based YOLOv2 object detector, which derives the 
computational domain fast, even with large model size. 

 
YOLO is an end-to-end object detection method that was proposed for 

real-time image processing in 2016 (Redmon et al., 2016). YOLOv2 is an 
improved version of the YOLO in terms of the detection accuracy and 
processing speed of YOLO (Redmon and Farhadi, 2017). YOLOv2 is 
efficient object detection by resizing the anchor box closest to the object 
rather than estimating the size of the object using a predefined object size 
(anchor box). Therefore, it is important to estimate the number and size of 
anchor boxes in order to generate a high-performance detector. In the next 
sections, we will show how the YOLOv2 object detector is trained and 
combined with the EDM to rapidly derive the computational domain for 
efficient seismic numerical modeling with large model size. 

 
 

METHODS 
 
Data collection and labeling 

 
In this study, snapshot images were used as the input dataset. A 

snapshot image records the propagation pattern of a wave at an arbitrary 
time. The snapshots take various forms depending on the background 
velocity, the source position and type, the size of the exploration area, and 
the acquisition time. For training data creation, two-dimensional finite-
difference time-domain seismic numerical modeling was performed in 
various model parameter configurations to extract numerous feature maps 
and train the detection model applicable to unseen data. Five different 
source location points, two different source functions, and 14 different 
velocity models were used. In particular, the 14 velocity models consisted of 
seven 1 × 1 (2.24 𝑘𝑚 × 2.24 𝑘𝑚) and seven 1 × 2 (1.25 𝑘𝑚 × 2.50 𝑘𝑚) 
velocity models, depending on the ratio of the depth and distance. This 
configuration is a part of the multiscale training intended to generalize the 
proposed deep learning model with various velocity model ratios. The 
velocity models used for the training dataset construction included 
homogeneous models, simple step models, and complex models. The 
complex models include the Marmousi2 model and the SEG/EAGE 
overthrust model (Aminzadeh et al., 1994), which are benchmark models. 
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All of the velocity models used to build the input dataset and source 
locations are shown in Fig. 3. The number of sources used in each model is 
5. The source depth is 20 𝑚  and the horizontal positions are 
370 𝑚, 740 𝑚, 1,110 𝑚, 1,480 𝑚, 1,850 𝑚  at “1 × 1 velocity model”, 
410 𝑚, 820 𝑚, 1,230 𝑚, 1,640 𝑚, 2,050 𝑚 at “1 × 2 velocity model”.  

 
Fig. 3 (a) shows the 1 × 1 velocity models, (b) shows the 1 × 2 

velocity models, and (c) shows the source locations used for input data 
generation, and the two types of source functions used to generate the data 
are shown in Fig. 4. In order to generate the wavefield changes over time, 
95 images were created at 10-ms intervals, for a recording time of 1 s. The 
wavefield data after 50 ms were used because the seismic signal was too 
small at the early time points. In summary, 95 wavefield snapshot images 
for each model parameter configuration was generated with 140 different 
model parameter configurations resulting in a total of 13,300 wavefield 
training data. After the wavefield training data were generated, they were 
resized and normalized. The deep neural network input size used in this 
study was 224 × 224 pixels, the same as in the ResNet-50 (He et al., 
2016) architecture. The non-zero wavefield area of the resized data was 
derived using the amplitude comparison method. The generated dataset and 
corresponding image labels are shown in Fig. 5. Finally, the labeled dataset 
was split up as follows: 70% of training data, 10% of validation data, 10%, 
and 20% of test data. 

 
Anchor box estimation 

Estimating the number of anchor boxes and their size is one of the most 
important stages for generating a high-performance detector (Loey et al., 
2021). Increasing the number of anchors can improve the mean intersection-
over-union (IoU) score; however, this can also increase the computational 
cost and lead to the overfitting of the detector (Itakura and Hosoi, 2020). 
Therefore, it is important to determine the appropriate anchor properties. To 
decide the number of anchor boxes, we used the ‘estimateAnchorBoxes’ 
function in MATLAB, which uses the mean IoU distance metric. The IoU is 
calculated as (Barhakur and Sarma, 2019). 

  

𝐼𝑜𝑈 =  
𝐴𝑟𝑒𝑎 𝑜𝑓 𝑂𝑣𝑒𝑟𝑙𝑎𝑝
𝐴𝑟𝑒𝑎 𝑜𝑓 𝑈𝑛𝑖𝑜𝑛

 
3

(3) 

This function leads to boxes with similar aspect sizes and ratios being 
clustered together, thus providing anchor boxes that fit the dataset. The 
number of anchor boxes was estimated using the labeled dataset as 
explained in “Data collection and labeling” section. In the labeled dataset, 
the optimal number of anchor boxes was determined as 13 which maximizes 
the mean IoU (0.819) as shown in Fig. 6. The optimal sizes of these 13 
anchors are shown in Table 3. 
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Fig. 3. Fourteen different velocity models with various numerical modeling 
environments that were used for dataset construction. The images shown in panel (a) are 
velocity models with a 1:1 ratio of depth and height, and the images shown in panel (b) 
are velocity models with a 1:2 ratio of depth and height, and (c) are five different points 
of source locations for each model ratio. 
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Fig. 4. To generate the training data, (a) the Ricker wavelet and (b) the first-derivative 
Gaussian function were used. 

 
 

 

Fig. 5. Snapshot image of the generated input dataset and the label data (red boxes). 
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Fig. 6. Mean intersection-over-union (IoU) values for different numbers of anchors for 
the wavefield images. 
 

 
Neural network architecture 

 
In general, YOLOv2 uses Darknet-19 as the default feature extraction 

layer. In this study, ResNet-50, which has been previously confirmed to 
perform with higher accuracy, was used as the feature extraction network to 
detect the computational domain in the wavefield data through seismic 
numerical modeling in real time (Sadak et al., 2020; Loey et al., 2021). 
ResNet-50 is one of the powerful deep neural networks which has shown 
excellent performance for representation learning and other recognition 
tasks; in fact, it won first place in various categories in the ImageNet Large 
Scale Visual Recognition Challenge and the 2015 COCO competitions (He 
et al., 2017). This network is built with 50 layers with 224 × 224 image 
input size; in addition, it is built with residual networks using shortcut 
connections that skip the convolutional layers, so that multi-scale features in 
the images can be captured and learned effectively. The total deep neural 
network architecture is shown in Fig. 7. Table 4 is the detailed network 
architecture for YOLOv2 layers in Fig. 7. The YOLOv2 layer uses the 
“Features” extracted from the “Feature extraction layers” to estimate the 
detected computational domain (x-, y-axis, width, height, class) of 
wavefield data. 
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Fig. 7. Network architecture of YOLOv2 object detector expanding domain method. 
 
 
 
Table 2. The detailed architectures of the YOLO v2 layers in Fig. 7. 
 
 

# 	 YOLO v2 Layers 

1 [3×3] Convolution 2D layer (1024) {1,1} + Batch Normalization layer + Relu 

2 [3×3] Convolution 2D layer (1024) {1,1} + Batch Normalization layer + Relu 

3 [3×3] Convolution 2D layer (78) {1,1} 

4 YOLO v2 transform layer 

5 YOLO v2 output layer 
 

 

Neural network training and validation 
 

 The YOLOv2 object detector was trained with training and 
validation data sets, and test data were used for testing the generalization 
performance. With hyperparameter tuning, the Adam optimizer (Kingma 
and Ba, 2014) was chosen with a mini-batch size of 32, the initial learning 
rate of 0.0001. Since the loss and the root mean square error (RMSE) 
converged when the epoch exceeds 20, the number of epochs was set as 20. 
The data were shuffled at each epoch to prevent overfitting. The deep neural 
network was trained in a multi-GPU (two NVIDIA GeForce RTX 3090 
GPUs) environment. The training hyper-parameters and GPU specifications 
are summarized in Table 5. Fig. 8 shows the loss and the RMSE values of 
training and validation over epochs. It was observed that the loss and RMSE 
decreased both for the training and validation data sets as the training epoch 
progressed, which indicates that the YOLOv2 object detector was trained 
well without overfitting issues. The trained YOLOv2 object detector 
processes 144 frames per second for an image of 224 × 224 size, which 
means it takes 0.023 sec to process one image. The test data set is explained 
in the next section. 
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Table 5. The training options of the detector model. 

Batch size Epoch Data shuffle Optimizer Learning rate 
Training 

environment 

32 20 
per  

every epoch 
Adam 0.0001 

2X NVIDIA 

GeForce RTX 

3090 GPUs 

 

 

 
 
Fig. 8. The training process with (a) loss of training and validation, and (b) root mean 
square error (RMSE) of training and validation. 
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Detector performance test 

 
 The most common performance test for object detection is average 
precision (AP) (Deng et al., 2009; Geiger et al., 2013; Lin et al., 2014). The 
AP is defined as the ratio of the sum of precision to recall as follows: 
 
                               𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜 !"#$%&%'(

!"#$%%
     ,                                         (4) 

 
 
and evaluate the ability of the detector to find all relevant objects and to 
correctly detect objects (Padilla et al., 2020). Precision is the ability of the 
detector to handle only the objects expressed by the detector. It is the 
percentage of correct answers among the results derived by the detector. 
Recall is the ability of the detector to find all objects in the data. It is the 
percentage of correct answers among all given ground truths. They are 
values between 0 and 1. The ideal precision occurs at all recall levels. In 
many applications, a truly positive detection is based on an IoU threshold 
>50% in the AP test (Sadak et al., 2020). However, in our application, it was 
found that the accuracy was insufficient with a threshold of 50%. Therefore, 
we tested the performance at a higher threshold of 85%. The AP test result 
is shown in Fig. 9. Despite the high threshold, a high-performance detector 
was constructed with AP = 0.94. Lastly, we made a final check of the 
trained YOLOv2 object detector with a new wave propagation problem. 
Seismic numerical modeling with the YOLO v2 object detector-based EDM 
(YOLOv2-EDM) was carried out using the SEG/EAGE salt dome 
(Aminzadeh et al., 1994) with a crossline 4-km-sliced two-dimensional P-
wave velocity model (Fig. 10), which is a benchmark model not used in 
training data generation. This velocity model had a length of 12 km, a depth 
of 4 km, and a grid size of 10 m. In this test, we used a Ricker wavelet with 
a dominant frequency of 4 Hz as the source, and the source was located 10 
m under the water. The computational domain determined by the detector is 
shown in Fig. 11. Through this test, the performance of the YOLOv2 object 
detector was further confirmed. 
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Fig. 9. Average precision (AP) graph at an intersection-over-union (IoU) threshold of 
85%. 
 
 
 

 

 
Fig. 10. SEG/EAGE salt dome crossline 4-km-sliced two-dimensional P-wave velocity 
model for testing. 
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Fig. 11. The wavefield image and detected computational domain by a YOLOv2 object 
detector according to the following times: (a) 0.3 s, (b) 0.6 s, (c) 0.9 s, (d) 1.2 s. 
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NUMERICAL EXAMPLES 
 
 In the previous section, we observed that in the AC-EDM the 
computational efficiency decreases as the model size increases. To 
overcome this limitation, we proposed the YOLOv2-EDM to determine the 
computational domain with a smaller overhead cost. In this section, 
accordingly, the YOLOv2-EDM object detector was trained with various 
wavefield snapshots and validated with new data sets. We named the EDM 
using the produced detector as YOLOv2-EDM. In this section, the 
computational efficiencies of AC-EDM and YOLOv2-EDM were compared 
using various model sizes. 

 
Modeling environment 

 
 We performed a numerical experiment using the Marmousi2 p-wave 

velocity model that was the same as the experiment described in THEORY 
section (Table 1). The source was located at a distance of 8.5 km and a 
depth of 20 m below the sea level, and receivers were located on all grids at 
20 m below the sea level as acquisition geometry. The source function was a 
Ricker wavelet with a dominant frequency of 4 Hz, and the recording time 
was 5.7 s. All numerical examples were run on a workstation with Intel 
Core i9-10980XE CPU cores at 3.70 GHz and 2 NVIDIA GeForce RTX 
3090GPUs. All numerical examples are performed in MATLAB R2021a. 

 
 
 

Computational efficiency and accuracy analysis 
 
 The modeling environments are the same as those used in the 

computational efficiency analysis of AC-EDM in THEORY 2. We 
compared the computational time and the efficiency of the proposed method 
and AC-EDM in each model. The computational efficiency results are 
shown in Table 6, and that results for computational efficiency are visually 
shown in Fig. 12. The results of computational time are the mean of three 
measurements. 
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Table 6. The computation time, efficiency, and MAE of four seismic numerical modeling 
cases. 
 
 

 Case 1 Case 2 Case 3 Case 4 

Reference modeling1) 3 min 9 s 25 min 5 s 3 h 20 min 30 s 1 d 2 h 37 min 7 s 

AC-EDM2) 

Computation time 2 min 36 s 23 min 7 s 3 h 25 min 38 s 1 d 4 h 11 min 4 s 

Efficiency 17.5 % 7.8 % - 2.6 % - 5.9 % 

MAE4) 2.53E-5	 5.03E-5	 1.07E-4	 2.34E-4	

YOLOv2-

EDM3) 

Computation time 2 min 57 s 19 min 55 s 2 h 32 min 12 s 19 h 55 in 51 s 

Efficiency 6.3 % 20.6 % 24.1 % 25.1 % 

MAE 5.98E-10	 5.60E-13	 6.88E-14	 1.033E-13	

 
1) seismic numerical modeling without the expanding domain method, 2) amplitude 
comparison expanding domain method, and 3) YOLOv2 object detector expanding 
domain method (proposed) 4) mean absolute error. 

 

 

Fig. 12. The computational efficiency graph of AC-EDM and YOLOv2-EDM. 
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In Case 1, with small model size, the efficiency of the proposed 
YOLOv2-EDM method was 6.3%, lower than that of AC-EDM. However, 
In Cases 2-4, with increased model sizes, it was found that the proposed 
YOLOv2-EDM method showed much better efficiency with computational 
scaling. Even in Cases 3 and 4, where the efficiency of AC-EDM exceeds 
the efficiency limit, the YOLOv2-EDM method showed high efficiency. 
Finally, the modeling accuracy was determined by comparing the 
seismograms obtained by these two methods (AC-EDM and YOLOv2-
EDM) with reference modeling (without EDM). Figs. 13-16 show the 
seismograms obtained for Cases 1-4 respectively: the reference 
seismograms are shown in Figs. 13-16 (a); the AC-EDM seismograms are 
shown in Figs. 13-16 (b); the YOLOv2-EDM seismograms are shown in 
Figs. 13-16 (c); and the differences between the two EDMs are shown in 
Figs. 13-16 (d) and Figs. 13-16 (e). As shown in the figures, the errors 
obtained from both EDMs are too small to be considered (RMSE < 0.001). 
To check the two EDMs accuracy, we calculate the mean absolute error 
(MAE) of each EDM and reference seismometers (Table 6). 

 

 
 

Fig. 13. The seismograms and difference obtained for case 1. (a) Reference seismogram; 
(b) AC-EDM seismogram; (c) YOLOv2-EDM seismogram (proposed); (d) Difference 
between AC-EDM and the reference; and (e) Difference between YOLOv2-EDM and the 
reference. 
 

 
 

Fig. 14. The seismograms and difference obtained for case 2. (a) Reference seismogram; 
(b) AC-EDM seismogram; (c) YOLOv2-EDM seismogram (proposed); (d) Difference 
between AC-EDM and the reference; and (e) Difference between YOLOv2-EDM and 
the reference. 
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Fig. 15. The seismograms and difference obtained for case 3. (a) Reference seismogram; 
(b) AC-EDM seismogram; (c) YOLOv2-EDM seismogram (proposed); (d) Difference 
between AC-EDM and the reference; and (e) Difference between YOLOv2-EDM and 
the reference. 
 

 

Fig. 16. The seismograms and difference obtained for case 4. (a) Reference seismogram; 
(b) AC-EDM seismogram; (c) YOLOv2-EDM seismogram (proposed); (d) Difference 
between AC-EDM and the reference; and (e) Difference between YOLOv2-EDM and 
the reference. 
 

 
CONCLUSIONS 
 

 We proposed a new seismic modeling technique that combines the 
EDM and a deep learning-based object detector to improve computational 
efficiency. The EDM uses an algorithm to obtain computational efficiency 
by excluding the zero wavefield domain from the computation and avoiding 
the use of the total modeling domain at the early wave propagation times. 
The amplitude comparing method is typically utilized for determining the 
zero domain; however, this algorithm shows a lower efficiency as the 
computational area becomes larger. Once trained, the data-driven deep 
learning-based EDM can keep its scalability by minimizing the overhead of 
the domain identification. 
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 The YOLO v2 object detector is one type of deep learning object 

detector that identifies the target object’s location by separating it from the 
background and then make a classification. The YOLOv2 object detector is 
widely used for its real-time image processing capability and in this work 
the EDM was combined with a trained YOLOv2 object detector in order to 
determine the computational domain rapidly. In specific, ResNet-50 was 
integrated to YOLOv2 for feature extraction, and the anchor box properties 
were selected through the anchor box estimation. After training the deep 
neural network, the detector test was performed through the AP method. For 
further validation a numerical modeling test on the other benchmark model, 
which was not included in the training data was performed. 

 
 Finally, we evaluated the performance of YOLOv2-EDM by 

comparing AC-EDM and YOLOv2-EDM using various model sizes. The 
experiment was performed by comparing the computational efficiency of 
the seismic numerical modeling with Marmousi-2 velocity models, each 
with a different grid size. In the Marmousi2 velocity model with a grid 
spacing of 10 m, AC-EDM and YOLOv2-EDM show similar computational 
efficiencies due to the negligible computation gain from the EDM. 
However, it was observed that YOLOv2-EDM was more efficient than AC-
EDM when the finer grids were used in the modeling. Contrary to AC-
EDM, YOLOv2-EDM showed a tendency to increase computational 
efficiency as the number of grids increases. Moreover, according to the 
experimental results of Cases 3 and 4, the efficiency converged to ~25.1 % 
computational gains under these modeling parameters. We expect that this 
technique could be applied to efficient large-scale high-frequency modeling 
that requires dense grid spacing. 
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