
JOURNAL OF SEISMIC EXPLORATION 31, 479-500 (2022)            479 

 

 

 

 
AUTOMATIC IDENTIFICATION OF CARBONATE 
KARST CAVES USING A SYMMETRICAL 
CONVOLUTIONAL NEURAL NETWORK 
 
 
 
 
 
YUNBO HUANG  and JIANPING HUANG 
 
School of Geosciences, China University of Petroleum (East China), Qingdao 266580, 
P.R. China. 
Laboratory for Marine Mineral Resources, Pilot National Laboratory for Marine Science 
and Technology (Qingdao), Qingdao 266071, P.R. China. 
 ybhuang95@163.com; jphuang@upc.edu.cn 
 
(Received December 7, 2021; revised version accepted August 21, 2022) 
 
 
ABSTRACT 
 
Huang, Y.B. and Huang, J.P., 2022. Automatic identification of carbonate karst caves 
using a symmetrical convolutional neural network. Journal of Seismic Exploration, 31: 
479-500. 
 

Oil and gas reservoirs with cavities are often developed in carbonate rocks. 
Accurate karst cave identification is an important step in reservoir interpretation. 
Traditional methods for karst cave detection are generally performed by searching for the 
beadlike diffraction phenomena in seismic imaging profiles, which are time-consuming 
and highly dependent on human interactions. We consider the karst cave detection as an 
image recognition problem of labeling a 2D seismic image with ones on karst caves and 
zeros elsewhere. We propose an efficient end-to-end convolutional neural network to 
automatically identify karst caves from the seismic migration images. To train the 
network, several velocity models are automatically generated first through our self-
defined modeling method, and the karst caves are simulated by adding diffraction points. 
Then these velocity models are transformed into migration imaging results by finite 
difference method and reverse time migration. The numerical examples show the stability 
and capability of the proposed network, which is capable of identifying the karst caves 
even with the seismic data of different qualities and different frequencies. The physical 
simulated data example also confirms the effectiveness of our method. 
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INTRODUCTION 
 

Exploration of hydrocarbon-bearing carbonate formations is of 
growing interest in the oil and gas industry worldwide, which accounts for 
approximately half of the world’s oil and gas reserves (Gao et al., 2016). 
Carbonate reservoir has the characteristics of large scale, high yield, and 
high quality of crude oil and gas. In contrast to sandstones, complex 
diagenesis, such as dissolution, cementation, and recrystallization, leads to 
extremely developed karst cave structures in carbonate rocks (Wang et al., 
2015). These dissolution  caves usually contain a large amount of oil and gas. 
Therefore, it is very important to quickly identify the karst caves in the 
seismic interpretation process. Krey (1952) and Hagedorn (1954) find that 
the diffraction signals in seismic records carry critical subsurface geological 
information, especially the information of karst caves. The conventional 
seismic processing techniques mainly focus on the specular reflection waves 
while the diffraction waves are often ignored or filtered out as interference 
noise. Even if the diffracted energy can be returned to the place, the 
diffraction imaging results with relatively weak energy will be contaminated 
by the strong reflected energy. Therefore, the imaging of diffraction waves 
separated from the wave field (Kong et al., 2017; Shen et al., 2020) can 
highlight the energy of underground karst cave structures in imaging 
(Khaidukov et al., 2004; Zhu et al., 2010; Silvestrov et al., 2016; Berkovitch 
et al. 2019).  However, karst caves are not the only geological bodies that 
exhibit strong amplitude energy in diffraction wave imaging results, other 
geological structures such as faults, riverways, and fractures also show 
similar characteristics. Many efforts have been made to focusing on 
individually extracting and identifying karst caves from seismic imaging 
sections. He et al. (2009) propose an accumulation energy difference method 
for cavern detection in carbonate reservoir by calculating the seismic 
reflection energy difference in trace or between traces. Liu et al. (2016) 
combine the edge-based attributes and region-based attributes for caves 
segmentation from seismic data. The proposed level-set-based framework by 
integrating two kinds of seismic sttributes can avoids redundant attribute 
relationships which existed in conventional fusion method. Wang et al. 
(2017) develops a tensor-based adaptive mathematical morphology to detect 
and extract the anomalously high-amplitude bright spots on seismic 
migration images. Fan et al. (2017) construct a new cave recognition 
operator for karst cave identification by using the GST theory and the 
geometrical features of the dissolution karst. Other studies try to establish 
the correspondence between the karst caves and its seismic imaging features, 
to help the interpreters better describe the cavities. Qu et al. (2012) derives 
the analytic expression of seismic response for an small isolated karst cave 
based on the acoustic wave equation under the premise of ignoring multiple 
scattering. Xu et al. (2016) conduct a physical modeling experiment to 
understand the beadlike diffraction features of karst caves with different 
scale, velocity, shape and fluids. These traditional karst cave identification 
methods either require a lot of computation costs or manual interpretation. 



	 481 

Therefore, an efficient, robust, and atomatic karst cave identification 
technique is appealing.  

 
In recent years, deep learning has achieved state of art in many fields 

and has obtained good results in solving problems that require human 
intervention. Many efforts have been also made to seismic data processing 
using deep-learning technologies. For instance, Wu et al. (2019) propose an 
end-to-end supervised deep learning network for automatic fault 
segmentation. Shi et al. (2018) embed U-Net into the recurrent neural 
network to precisely detect the salt bodies, where the predicted salt dome 
boundary is more accurate. Yang and Ma (2019) implement a fully 
convolutional neural network to learn the nonlinear mapping between the 
shot data and seismic velocity models. Gao et al. (2020) design a novel deep 
learning network with double input to classify the flow structures and 
characterize the gas void fraction. Huang et al. (2020) apply a convolutional 
neural network to change the raw seismic data into a local slope map.  For 
the automatic identification on karst caves, Cai et al. (2018) present an 
improved deep learning model using the optimized convolutional nearal 
network to identifying karst caves. This method only detects karst caves, 
does not accurately characterize the shape of the caves, and the labels of the 
training data are manually calibrated on the physically simulated dataset. 

 
In this study, we develop a convolutional neural network (CNN) for 

automatic karst cave identification directly from migration images The 
original U-net architecture (Ronneberger et al., 2015) is modified to be more 
suitable for the automatic cavity identification problem. A boundary padding 
operation is added into each convolutional layer of the original U-Net to 
ensure that the input and output are of the same size. Considering that the 
binary label is highly unbalanced with a dominant distribution of zeros (non-
karst caves) but only a very small proportion of ones (karst caves), we use a 
class-balanced cross-entropy loss function to maintain good convergence 
during the training process. To generate the velocity models with karst caves 
under different geological structures and background velocities, we design a 
set of automatic generation methods of the karst cave velocity models. The 
diffraction points with different scales and velocities are used to simulate the 
karst caves and the velocity models with karst caves are generated by 
randomly adding the diffraction points to the velocity models. Through the 
finite difference method (Ozdenvar and McMechan, 1997; Hardi and Sanny, 
2016) and reverse time migration (Baysal et al., 1983; Chang, 1987), these 
velocity models with karst caves are transformed into the migration images, 
which are the inputs of the CNN. The label is a probability distribution map 
of karst caves, which is a binary image, with 1 representing karst caves and 
0 representing non-karst caves. Namely the automatic karst cave 
identification problem is turned into a dichotomy problem. During the 
training process, the migration images are fed into the network together and 
the network effectively approximates the nonlinear mapping between the 
seismic data and the corresponding probability distribution of karst caves. 
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Although the training process is expensive, the cost of the prediction stage 
by the network is negligible once the training stage is completed. One 
migration image of the testing data sets can be predicted within 1 s by the 
well-trained model, which is performed on the workstation with NVIDIA 
RTX5000 GPU. Sensitivity tests on data sets generated with different 
imaging quality, wavelet frequency, and incorrect migration velocity are 
performed. The prediction results on the physical simulated data also 
demonstrate the applicability of our method.. 

 
This paper is organized as follows. We first present the data 

preparation method, including the automatic generation of the velocity 
models with karst caves and the generation of migration images and the 
corresponding labels. Then we illustrate the network architecture for karst 
cave identification in detail. We perform sensitivity tests on imaging 
qualities, wavelet frequency and migration velocity errors.  We also verify 
our method on a physically simulated dataset. Finally, we discuss the 
identification performance of the proposed network, advantages, 
disadvantages, and improvement methods. 

 
 

TRAINING DATA SETS 
 

There are three types of machine learning, supervised learning, semi-
supervised learning, and unsupervised learning. For an image recognition 
problem, the most effective way is supervised learning, namely, the true 
labels are known during the training process. However, the true labels can 
not be obtained for many geophysical problems. For the case of karst cave 
identification, labeling karst caves manually is time-consuming and 
subjective, and sometimes may lead to incorrect labels. Inaccurate or even 
wrong labels will affect the training process of the neural network and 
reduce the accuracy of the prediction results. To address these issues, we 
propose a method to automatically generate the velocity model with karst 
caves by establishing an accurate relationship between the karst caves and 
the migration imaging results from the wave-field response characteristics. 
The data set for network training is generated based on the wave equation. 

 
 

Automatic velocity model generation 
 

To train an efficient network, it is necessary to simulate the 
migration imaging characteristics of the karst caves under various geological 
and structural background conditions. Therefore, we first create a certain 
number of velocity models without karst caves. The automatic modeling 
strategy was inspired by the data augmentation approach for automatic fault 
segmentation in Wu et al. (2019). In this workflow, we first create the 
horizontal layered velocity models with different thicknesses of each layer, 
with the velocity values of each layer ranging from 2000 to 6000 m/s. Then, 
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we increase the complexity by vertically shearing the velocity model. As 
shown in Fig. 1, we define four types of models including horizontal layered 
models with velocity gradually increased with depth, curved layered models, 
models featured with thick and reverse layers, and models with a high-speed 
anomaly. All the automatically generated velocity models have the same size 
of 512 256 points. A total of 55 different velocity models are automatically 
generated during this process. 

 

 
Fig. 1. Four self-generated velocity models with different geological structures in a total 
of 55 models. (a) represents the horizontal layered models; (b) refers to the curved 
layered models; (c) represents the models featured with thick and reverse layers; (d) is the 
models with the high-speed anomaly. 

 

Adding diffraction points 
 
We add diffraction points to the velocity models to generate models 

with karst caves. To simulate karst caves of different sizes, we generate 
three types of diffraction points with different pixels, 1 1, 2 2, and 3 3. 
For each generated velocity model, 100 diffraction points with different 
positions and sizes are randomly added. The velocity values of the karst 
caves are given by adding a random perturbation to the original velocities 
and the perturbation value is -0.33 to 0.33 times the originals. The label is a 
probability distribution map of karst caves, which is a binary image, with 1 
representing cavities and 0 representing non-cavities. Fig. 2 shows four 
representative velocity models with diffraction points, from which the 
corresponding binary labels are (Fig. 3) obtained easily.  
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Fig. 2. Four representative velocity models with karst caves, generated by adding 
diffraction points to the velocity models in Fig. 1. 
 

 
Fig. 3. The labels correspond to the velocity models with karst caves in Fig. 2. The white 
spots in the binary images denote karst caves (ones) and the elsewhere black area 
represents non-karst caves (zeros). 
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Migration image generation 
 

We focus on automatic karst cave identification from the migration 
imaging profiles. The network takes in the migration imaging results and 
outputs a 2D karst cave distribution probability map. The velocity models 
with karst caves and the corresponding probability distribution map of karst 
caves are generated, the migration imaging results corresponding to these 
velocity models are required to be generated for preparing the input data set. 
We use the finite difference method to simulate seismic waveforms with a 
30 Hz Ricker wavelet. For each velocity model, 50 sources are evenly 
placed with a spatial interval of 100 m and 512 receivers are evenly placed 
with a spatial interval of 10 m. To simulate more realistic imaging results, 
we add random noise to the shot records before performing the migration 
process. After forward simulation, these generated velocity models are 
smoothed to be the migration velocity models. We perform reverse time 
migration and Laplace filtering (Burt and Adelson, 1983) to obtain the 55 
final migration imaging results (Fig. 4). 
 

 
 
Fig. 4. The reverse time migration images generated with the finite difference method 
from the velocity models in Fig. 3. High-pass filtering is performed to decrease the low-
frequency noise. 
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CNN-BASED KARST CAVE DETECTION METHOD 
 

In this section, we first illustrate the network architecture for karst 
cave identification in detail. Then, a class-balanced binary cross-entropy loss 
function (Xie and Tu, 2015) is presented.         


 
Network architecture 
 

U-Net is an auto encoder-decoder network designed for medical 
image segmentation. As shown in Fig. 5, the main structure of the network 
includes two parts, down (encoder) and up (decoder). Both the input and 
output are images. The shallower layer is used to solve the pixel positioning 
problems, whereas the deeper layer is responsible for pixel classification. 
 

 
 
Fig. 5. A modified convolutional neural network (U-Net) for automatic karst cave 
detection. 
 

The network contains a total of 23 convolutional layers. In the 
contracting path on the left, each step includes two 3×3 convolutional layers 
followed by a ReLU activation (Nair and Hinton, 2010; Krizhevsky et al., 
2012) and a 2×2 max-pooling operation with stride 2 for downsampling. 
Symmetrically, each step on the right expansive path consists of a 2×2 
upsampling operation with the same stride, and two convolutional layers to 
halves feature channels. In each step, the concatenation path links the left 
and right paths to recover the spatial information damaged mainly by max-
pooling and other operations. The sigmoid activation function is applied to 
the last channel feature vectors to produce a probability map of the output 
with the same size as the input. The network contains four times of 
upsampling operation in total and the skip connection is used in the same 
stage instead of directly monitoring and loss back-transmission on high-level 
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semantic features. In this way, more low-level features are integrated into 
the finally recovered feature map. It also enables the integration of features 
of different scales, so that multi-scale prediction and deep supervision can be 
carried out. 

 
 

Class-balanced cross-entropy loss 
 

The loss function represents the difference between the true karst 
caves and the predictions, which is very important for network training. The 
update of the parameters in the network is achieved through the loss 
backpropagation (Hecht-Nielsen, 1989) during the training process. We 
regard the karst cave identification problem as a binary segmentation 
problem. The output of the network is a probability distribution of 0-1. The 
binary cross-entropy loss function is generally used in the binary 
segmentation of a common image: 
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where n represents the number of pixels. yi denotes the true binary labels (0 
or 1) and xi is the prediction probabilities ( ) computed from the 
sigmoid activation in the last convolutional layer. The proportion of karst 
caves in the whole imaging region is relatively small, resulting in the highly 
imbalanced between zeros (non-karst caves) and ones (karst caves). To 
address this issue, we use a class-balanced binary cross-entropy loss function 
(Xie and Tu, 2015) to avoid the situation that the network is not trained or 
converged to predict only zeros. 
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where  0 /Y Yβ =  and 11 /Y Yβ− =  . 0Y   and 1Y  denote the number of pixels of 
karst caves and non-karst caves in the label data sets, respectively. 
Y represents  the total number of pixels in the label data sets. By introducing 
the class-balancing weight β  on a per-pixel term basis, the binary cross-
entropy loss with additional trade-off parameters for biased sampling can 
help the network converge in the correct direction. 
 
 
Training and testing 
 

We generate a total of 55 migration images and the corresponding 
labels, then we divide the inputs into 64 64 sample patches having 2750 
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patches in total. We assign 2475 and 275 samples as the training and 
validation data sets, respectively. Fig. 6 is a partial display of the data set we 
used to train the network. The first column shows the velocity models, the 
second column shows the corresponding migration images (inputs), and the 
third column is the karst cave probability distribution maps (labels). To test 
the effectiveness of our method, we create two new velocity models with 
karst caves based on the section of the BP 2.5D model and Marmousi model 
and convert these two new models into migration images using the same 
process. The testing data set are different from the training data set and are 
unknown during the prediction process.  
 

 
 
Fig. 6. Samples from training data set and corresponding velocity model sections. The 
first column is the velocity models, the second column represents the corresponding 
migration images as inputs, and the third column shows the karst cave probability 
distribution maps as the labels. 


