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ABSTRACT 
 
Ivan, M.S., Huang, J.-P., Mu, X.R. and Yang, J.D., 2022. Enhancement of seismic image 
quality by least squares reverse time migration case study Albertine graben south 
western Uganda. Journal of Seismic Exploration, 31: 523-544. 
  
 Reverse Time Migration (RTM) is a conventional two-way wave-based method 
up to date known as the most popular imaging technique for complex subsurface 
structures. The technique uses the adjoint wave field to approximate the inverse 
component of the migration. The adjoint is a bit inaccurate which limits the resolution, 
image quality, balance of amplitudes of the final image. Least squares reverse time 
migration (LSRTM) is an iteration technique which can overcome the challenges faced 
by RTM as we incorporate the Least Square Inversion (LSI) algorithm into the RTM. 
Numerical tests were carried out on two models that is; multi-layer model (listric faults), 
positive flower structure model to validate the effectiveness of LSRTM technique in 
seismic imaging. Single trace comparison between the reference/true reflectivity to the 
RTM  (LSRTM =1), LSRTM at the 10th and 30th iteration was analyzed for all the 
models. A clear strong positive correlation between true reflectivity and 30th iteration 
image was noted for all the two models in comparison with the RTM image. High 
convergence rates were noted after plotting the data residuals against iteration numbers. 
In all models a sharp decrease in the data residuals were noted before the 10th iteration 
followed by a gradual decline from 10th to 30th. 
 
 LSRTM can greatly suppress migration artefacts, acquisition noise and amplify 
the signal, balance the amplitude as portrayed on the single trace comparison diagrams 
for all models and enhance resolution (thinner reflection events) in comparison with 
RTM images. The algorithm is highly sensitive to low S/N ratio noise but good images 
are guaranteed at high S/N ratio above 10.0 dB. 
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INTRODUCTION 
 
 The Albertine graben is part of the Western branch of the East 
African Rift System (EARS) which stretches from Zambia (L. Malawi) and 
terminates on to the Central African Rift System (CARS) in South Sudan. 
  
 The Albertine graben stretches from South Sudan boarder (North) to 
L. Edward (South) total distance of 570 km and a width of 45 km (Dou et 
al., 2004). It was formed due to extension forces pulling apart leading to the 
down throw of the middle block forming the Albertine graben with 
bordering fault escarpment. Sedimentation then occurred in the basin under 
lacustrine, fluvial, beach and deltaic environments depositing gravel, sands, 
silts and clays under the different deposition environments (Kiconco, 2005). 
Stratigraphically the Albertine graben is subdivided into seven (7) major 
units from top to bottom, i.e., Rwebisengo Fm, Nyaburogo Fm, Nyakabingo 
Fm, Kasande Fm, Oluka Fm, Kakara Fm, Kisegi Fm and pockets of  Karoo 
like formations (Pickford et al., 1994). The detailed positive flower structure 
model with the different formations is attached in the Appendix. 
  
  The EARS constitute of numerous positive flower (transpressional) 
structures which suggest that extensional tectonics followed by 
compressional/thrusting tectonic regimes (Kiconco, 2005) are responsible 
for the formation of these structures. positive flower structures mainly 
comprise a shallow antiform, upward spreading strands of reverse faults, 
and a few normal faults. 
 
     The intense tectonic activity affected the already gas saturated layers 
posing imaging problems in some parts of Albertine graben.  Heritage Oil 
and Gas Company (2010) acquired seismic 2D lines and Tullow oil 
company acquired 3D seismic cube in the different parts of the fields in the 
graben. Data was processed using Post stack Time Migration method 
unfortunately the reflectors are poorly illuminated with low Signal to Noise 
ratio (S/N). 
 
      The LSRTM technique greatly improves imaging resolution by 
compensating for irregular illumination caused by acquisition geometry and 
complex Geological structures. The method also is very powerful at 
balancing seismic amplitude in imaging. 
 
 Reverse Time Migration (1st iteration of LSRTM) being a two-way 
wave migration technique tends to overcome almost all the challenges faced 
by the one-way wave migration-based techniques including accurate 
imaging of steeply dipping structures and increased resolution among 
complex geological structures. The drawbacks of RTM arise from the 
inaccurate inversion operator used, which distorts the final image in case of 
under-sampling, uneven subsurface illumination band-limited source 
wavelet and the limited recording aperture (Yang et al., 2019). 
  
      In case of thin layers with high velocity contrasts, the imaging result 
generated is highly distorted due to the strong low frequency noise 
generated. LSM is suitable for the attenuation of these artifacts as compared 
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to the post migration processing tools including application of the Laplacian 
filter which removes both the useful signal and the artifacts (Fan et al., 
2016; Lei et al., 2018; Li et al., 2017; Mu et al., 2020). 
 
      LSRTM technique is a combination of both LSM and RTM, thus the 
technique combines all the advantages of both methods to give a more 
realistic, resolved and clearer subsurface image (Dai et al., 2012; Dong et 
al., 2012). The three steps for LSRTM includes; Reverse Time Demigration 
(RTDM), Reverse Time Migration (RTM) and searching direction 
estimation (Yongming and Qiancheng, 2019). RTDM based on Born 
approximation is used to generate the predicted data. We use the Conjugate 
Gradient Method (CGM), which is an iterative optimization algorithm, to 
estimate the search direction. Convergence speed was boosted by the use of 
the numerical line search approach known as the quasi-linear method and 
the step length determined. 
  

  Ongoing intensive seismic exploration activities call for precise 
seismic processing in the Albertine graben. The complex geological 
structures limit conventional RTM method to accurately image the 
subsurface. Therefore, by the use of LSRTM technique, accurate seismic 
interpretation of complex geological structures and thin beds will be 
delineated with a high degree of confidence probably more reserves will be 
discovered.  
 
 
 
LITERATURE REVIEW/THEORY ABOUT LSTRM 
 
Reverse Time Migration (RTM) 
  
     To date, RTM is the most effective imaging method for prestack 
depth migration of complex structures because it uses two-way wave 
equation for wavefield propagation and has no dip limitation (Chang and 
McMechan, 1987; Caldwell, 1999; Du et al., 2012; Yao, 2013; Nguyen and 
McMechan, 2015; Zhao et al., 2017; Fang et al., 2019). Conventional RTM 
is formulated as the adjoint operator of forward modeling rather than the 
inverse operator (Claerbout, 1992). With irregular acquisition geometry and 
limited wavelet frequency-band, the images derived from RTM might have 
unsatisfactory subsurface illumination and spatial resolution. Conventional 
RTM does not formulate the reversal procedure as an inverse problem. 
Instead of using a properly solved inverse operator, a conventional 
migration uses an adjoint operator of the wave propagation operator, for an 
efficient implementation. LSRTM provides a way to produce high-quality 
reflectivity images by iteratively approximating the inverse of the Hessian 
matrix. 
  
     Xue et al., 2011, modelled seismic data using the following equation 
 
𝒅 𝑥! ,𝜔 = 𝑗𝜔 !!"#$

! !
𝐺! 𝑥! , 𝑥,𝜔 𝑟 𝑥,𝜃 𝐺! 𝑥, 𝑥! ,𝜔 𝑠 𝜔 𝑑𝜃𝑑𝑥    ,        (1) 
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where d is the reflection data, 𝜃 is the angle of reflection, s is the source 
signature, v represents the velocity at the reflector, 𝐺! 𝑥, 𝑥! ,𝜔  is the green 
function from the source at position 𝑥! to the reflector 𝑥, 𝐺! 𝑥! , 𝑥,𝜔  is the 
green function from the reflector to the receiver 𝑥!, 𝑟 𝑥,𝜃  is the angle 
dependent on reflectivity and 𝒋 is the imaginary unit. Since from the law of 
reflection of light angle of incidence is equal to the angle of reflection,  then 
 the dip factor !!"#$

! !
 is accurate for isotropic media. 

 
     Inversion of an angle independent/stacked reflectivity image 
simplifies [eq. (1)] yielding, 
 
           𝒅 𝑥! ,𝜔 = 𝑗𝜔 𝐺! 𝑥! , 𝑥,𝜔 𝑰 𝑥 𝐺! 𝑥, 𝑥! ,𝜔 𝑠 𝜔 𝑑𝑥   .                  (2) 
 
 Conventional RTM, which applies an adjoint operator (Claerbout, 
1992), can be expressed as 
 
𝐼 𝑥 = [𝑗𝜔𝐺!(𝑥! , 𝑥,𝜔)𝐺! 𝑥, 𝑥! ,𝜔 𝑠(𝑥! ,𝜔)]!𝑑 𝑥! , 𝑥! ,𝜔 𝑑𝑥!𝑑𝜔   ,      (3) 
 
where † denotes the complex conjugate. The RTM which is based on eq. (2) 
can be implemented by the following steps: (1) convolving the product of 
the source and receiver Green’s functions with the first-order derivative of 
the source wavelet 𝑗𝜔𝑠(𝑥! ,𝜔), which generates a synthetic wavefield, (2) 
cross-correlating the synthetic wavefield with the recorded seismic data, (3) 
summing the overall traces, and (4) summing the overall frequencies. The 
last step is called the zero-lag image condition. 
 
 RTM gives correct positions and times but inaccurate amplitudes 
because the adjoint operator only deals with the kinematic information of 
the wavefield (Grohmann et al., 2015). 
 
 
Least Square Migration (LSM) and least square inversion 
 
 Least squares migration is based on orthogonality that is the shortest 
distance from a point to a plane is carried by a line segment perpendicular to 
the plane (Sauer, 2012). 
 
 The basic theory framework of LSM was proposed by Tarantola 
(1984). LSM has been applied to the ray-based migration (Nemeth et al., 
1999; Dai et al., 2012) and the one-way wave migration (Kühl and Sacchi, 
2003; Clapp et al., 2005; Zhu et al., 2018). With the advancement of 
computational technology, LSRTM, which is based on the two-way wave 
equation, is implemented, and handles large scale synthetic and field data 
(Dai and Schuster, 2013; Zhang et al., 2015; Yang et al., 2016; Li et al., 
2017a; Liu et al., 2017; Ping et al., 2017). Almost all geophysical problems 
are known to be non-linear though some can be linearized example Born 
approximation used to linearize migration (Yao, 2013). Consider a linear 
system of equation describing the migration problem [eq. (4)]. 
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        d!"# = 𝑳m     .            (4) 
  
 The solution to the equation if solved in least square sense results into 

the Least Square Migration (LSM). The major purpose of the inversion is to 
find the earth’s reflectivity matrix (m) by inverting the modelling operator 
L. In practice, the adjoint of the modelling operator is often used as an 
approximation to its inverse. Although approximate, it has some advantages 
including its tolerance to imperfections in the data and to certain extent 
allows incomplete data (Claerbout, 1992). The adjoint process can be 
expressed as 
 
          m = 𝐋!d!"#    ,                                                                                               (5) 
 
where † represents the conjugate transpose of L. Rarely the adjoint equates 
to the inverse thus it is necessary to implement the full inversion to achieve 
a more accurate result. It is worth noting that eq. (1) is not underdetermined, 
the unique generalized inverse of L can be found as a least-squares solution. 
The goal of least-squares inversion is to find a model that best describes the 
data, such that the objective function eq. (6) is a minimum. The major aim 
of LSM is to estimate a reflectivity model, such that the resultant waveform 
synthetics can best fit the observed data in the least-squares and single-
scattering Born-approximation sense (Hao et al., 2016). 
  
        φ m = ||d!"# − Lm||!    ,                                                                        (6) 

        
 at minimum !! !

!(!)
= ![!!"#!!"]![!!"#!!"]

!"
= 0     .                                        (7) 

 
         L!𝐿𝑚 − 𝐿!𝑑 = 0    .                                                                                     (8) 

 
Hence the Least square solution for eq. (1) 
  
           𝑚 = (𝐿!𝐿)!!𝐿!d!"#     .                                                                              (9) 
 
     It can be noted that the solution to eq. (8) is unstable and eq. (9) also 
does not have a unique solution in cases where eq. (8) is an ill-posed 
system. 
 
 Imposing additional constraints (regularization), bias the solution to 
stabilize the inversion (Aster et al., 2005). Tikhonov regularization method 
is widely used in geophysical inversions and involves modifying the 
objective function [eq. (6)] to 
 
            φ m = ||d!"# − Lm||! + λ!||Tm||!     ,                                            (10) 
 
where λ! is called the regularization parameter, and T is the Tikhonov 
regularization matrix. Minimizing the objective function given by eq. (7) is 
equivalent to solving 
            !

!!
! !!"#

! =  !
!!

! !
!! 𝑚     .                                                               (11) 
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 In this paper we did not use the regularization method. Inverting a 
large matrix needs massive computation and an explicit matrix formulation 
for seismic modelling is usually unavailable for LSM. Fortunately, iterative 
methods, such as conjugate-gradient method (CGM), Steepest-Descent 
Method (SDM) among others gradient techniques, overcome the above-
mentioned problems. The CGM and SDM are the commonly methods 
because they eliminate the formation of an explicit matrix for modelling and 
approximate the solution more efficiently than other methods of inverting 
large matrices. 
 
 
Steepest-Descent Method (SDM) 
 
 This is an optimization technique in which the solution is found by 
searching iteratively along the negative gradient direction which is the path 
of steepest descent of the objective function per iteration. This is achieved in 
two steps. Firstly, calculation of the direction of the steepest descent; 
 
            r m = − !! !

! !
= 𝑳!d!"# − 𝑳!𝑳𝒎     .                                           (12) 

 
          The second step is to determine the step length (α) by applying a line 
search along the steepest-descent direction. If the updated model m! reaches 
the minimal point in the steepest-descent direction, the derivative of the 
objective function with respect to the step length is zero, hence 
 

            !! !!
! !

= !! !!
!!!

! !!!
! !

= 0     .                                                       (13) 
 
 
Conjugate-Gradient Method (CGM) 
 
 Conjugate-gradient method is based on finding a linear combination 
of a set of search directions (vectors) to form the model error. The ideas 
behind conjugate gradients rely on the generalization of the usual idea of 
inner product (Sauer, 2012). Generally, for a linear system with n variables, 
the conjugate-gradient method converges in less than n iterations. 
Furthermore, the inversion continues to converge rapidly after the first few 
iterations, unlike the steepest-descent method, which converges slowly as 
the solution approaches the minimum. The Conjugate Gradient Method is a 
direct method that solves of the symmetric positive-definite system 𝐀𝐱 = 𝐛 
with the finite loop. In this paper the Conjugate-Gradient was employed. 
 
      
 The conjugate gradient iteration updates three different vectors on 
each step. The vector 𝑥! is the approximate solution at step k. The vector 𝑟! 
represents the approximate residual of vector 𝑥! and 𝑑! represents the new 
search direction used to update the approximation 𝑥! to the improved 
version 𝑥!!!. 
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The Conjugate Gradient finite loop 
 

𝑥! = 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑔𝑢𝑒𝑠𝑠 
𝑑! = 𝑟! = 𝑏 − 𝐴𝑥! 

for k = 0,1,2,… . . , n − 1 
𝑖𝑓 𝑟! = 0, 

 𝑠𝑡𝑜𝑝,  
𝑒𝑛𝑑  

𝛼! =
𝑟!!𝑟!
𝑑!!𝐴𝑑!

 

𝑥!!! = 𝑥! + 𝛼!𝑑! 
𝑟!!! = 𝑟! − 𝛼!𝐴𝑑! 

𝛽! =
𝑟!!!! 𝑟!!!
𝑟!!𝑟!

 

𝑑!!! = 𝑟!!! + 𝛽!𝑑! 
            End 

 
 
Least Squares Reverse Time Migration  
 
     The combination of both LSM and RTM techniques resulted in the 
invention of the LSRTM. The method combines the advantages of the two-
way wave equation for migration, and the accurate inverse operators of the 
LSM (Yao et al., 2015). 
 
 The least-squares RTM method attempts to minimize the difference 
between the observed field data and the synthetic data generated by the 
migration image. Hence, seismic migration should be posed as an inverse 
problem for finding an optimal reflectivity model through the following 
objective function (Lailly, 1984; Tarantola, 1984; Plessix and Mulder, 2004; 
Dai et al., 2012). 
 

       ∅! 𝐼 𝑥 = d!"# 𝑥! , 𝑥! ,𝜔 − 𝑑!(𝑥! , 𝑥! ,𝜔)
!
!     ,                     (14)   

 
where  𝑑!(𝑥! , 𝑥! ,𝜔) is the predicted data and 𝑑 𝑥! , 𝑥! ,𝜔  is the recorded 
data. RTM through this minimization is referred to as least-mean squares 
RTM. 
 
 This minimization can be achieved by using a variety of localized 
optimization methods. If only primary reflections are considered, which 
means the Green’s functions are independent of reflectivity, differentiating 
[eq. (14)] with respect to 𝐼 𝑥  yields the gradient of the objective function 
as 

 
∂φ!(𝐼 𝑥 )
𝜕𝐼(𝑥)

= 𝑅𝑒
!,!!

[𝑗𝜔𝐺!𝑠]![𝐺!
!(d!"# 𝑥! ,𝜔 − 𝑑! 𝑥! ,𝜔 )]    ,   (15) 
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where 𝑅𝑒 represents the real part of a complex number. Eq. (15) not only 
provides a means of calculating the gradient, but also gives it a physical 
meaning. In particular, 𝑗𝜔𝐺!𝑠 describes the forward-propagated wavefield 
from the first-order derivative of the source, while 𝐺!

!(𝑑!"# 𝑥! ,𝜔 −
𝑑! 𝑥! ,𝜔 ) is the data residual, and 𝐺!

! represents the backward propagation 
of the residual into the earth. The backward propagation is essentially 
equivalent to forward modeling the time-reversed residual as the virtual 
source. 
  
 The product of 𝐺!

! 𝑑!"# 𝑥! ,𝜔 − 𝑑! 𝑥! ,𝜔  with 𝑗𝜔𝐺!𝑠 followed by 
the summation equates to using the zero-lag cross-correlation imaging 
condition (Clearbout, 1971). 
 
 In the time domain eq. (15) yields: 
 

 ∂φ!(𝐼 𝑥 )
𝜕𝐼(𝑥)

= 𝐺! ∗
𝜕𝑠
𝜕𝑡

𝐺! ⊗ d!"# − 𝑑!
!,!!

    ,                           (16) 

 
where ∗ and ⊗ are the convolution and cross-correlation operator, 
respectively.  !"

!"
  is the first order derivative of the source wavelet. Knowing 

the gradient and step length from the various gradient methods and secant 
method respectively, the reflectivity model can be updated iteratively [eq. 
(17)]. 
 
 
           𝐼!!! 𝑥 = 𝐼! 𝑥 +∝ 𝑞    ,                                                                 (17) 
 
 
where ∝ is the optimum step length per iteration and 𝐼 represents the vector 
of the image and q is the vector of the update direction. 
 
 The inversion converges when the misfit is within an acceptable 
threshold (ε) as shown in the workflow (Fig. 1) below. 
 
 
 
NUMERICAL TESTS 
 
     The proposed method is tested on simulated 2D land data set. Two 
models are used to demonstrate the superiority of LSRTM in comparison 
with the RTM technologies in imaging complex geological structures in the 
subsurface. The synthetic seismic record is modeled using the acoustic 2D 
wave equation with constant density. The temporal derivative is discretized 
using the 2nd-order discretization scheme and the spatial mixed derivative is 
discretized using the 8th-order centered finite difference scheme in the 
following numerical examples. Perfectly Matched Layer (PML) absorbing 
conditions are used in our scheme and were implemented on four sides of 
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the model (Hu et al., 2007). The P-wave velocity models were constructed 
using Tesseral 2D software. 
 

 
 

Fig. 1. LSRTM Workflow algorithm. 

 
 
 
Multi layer horizontal model  
  
 Multi-layer model with alternating thin strata juxtaposed on to high 
angle normal faults and exhibiting strong velocity contrast is tested by the 
algorithm. This is a common phenomenon in some fields in the Albertine 
graben. Conventional imaging methods including RTM fail to delineate 
some of the thin layers exhibiting high velocity contrast (low resolution) yet 
these may be good reserviors for oil and gas. The model grid size for 
simulation is 401×201 grid points, grid spacing 10 m (horizontal and 
vertical). 
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 Ricker source wavelet dorminant frequency of 20 Hz was used for 
synthetic generation at shot interval spacing of 40 m for 100 sources. The 
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                           a) 

   

 
 
 
Fig. 3. Images of a) Reflectivity image, b) RTM, c) and d) LSRTM at 10th and 30th 
iteration respectively. LSRTM technique is a powerful technique in attenuating noise 
(Fig. 3d) increased SNR, neater faults, enhanced and balanced amplitudes in comparision 
to the RTM model (red dotted box). Notice the reflectivity of the final image is an order 
of magnitude compared to RTM result.  
 

 
 The unfiltered total wave number spectrum (Fig. 5) for the true 
image, RTM laplaced RTM, LSRTM at the 10th iteration and final inverted 
image  was plotted. The final inverted image closely approximates the true 
image spectrum so does the 10th iteration image to the final image 
spectrum, and weak correlation is observed between RTM and true image. 
This is attributed to the strong low frequency noise in the RTM image. It 
can be concluded that LSRTM maintains the spectral component of each 
wave, recovered high frequency energy with increasing iteration despite the 
complexity of the model. 
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Fig. 4. Comparison between vertical reflectivity profiles extracted from reference, RTM 
and final image at a) 1.0 and b) 2.0 km, respectively. The inverted final image 
approximates the true image in phase and amplitude (red dotted rectangle). 
 

 

 The unfiltered total wave number spectrum (Fig. 5) for the true 
image, RTM laplaced RTM, LSRTM at the 10th iteration and final inverted 
image  was plotted. The final inverted image closely approximates the true 
image spectrum so does the 10th iteration image to the final image 
spectrum, and weak correlation is observed between RTM and true image. 
This is attributed to the strong low frequency noise in the RTM image. It 
can be concluded that LSRTM maintains the spectral component of each 
wave, recovered high frequency energy with increasing iteration despite the 
complexity of the model. 

b)  a) 
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Fig. 5. Comparision amplitude spectrums for unfiltered RTM, Laplace filtered RTM 
final image at the 10th and 30th iteration and true image. The final image spectrum  
closely approximates the true image. 
 
 
Positive flower structure model 
 
 The LSRTM algorithm is tested on positive flower structure typical in 
rift basins, e.g., Ugandan’s Albertine graben, model size to 601×301, grid 
interval of 10 m (Fig. 5a). The flower structure comprises of high angle 
faults, anomalously low velocity layers, steeply dipping beds among others 
incapable of being imaged accurately by conventional migration techniques. 
The acquisition system comprise a total of 601 geophones and 301 shot 
points evenly deployed on the surface with an interval of 10 m and 20 m 
respectively. A Ricker source wavelet with a peak frequency 25.0 Hz is 
used as the source wavelet signature. The data was sampled at an interval of 
0.5ms for a record length of 2.50 s. 
 
 The reflectivity image, RTM and final inverted imaging result were 
Laplace filtered (Fig. 6). The following observations were noted; Firstly, the 
LSRTM image had fewer artifacts than the RTM image basically the low 
frequency (Fig. 6d). Despite the fact that LSRTM image is neater, traces of 
migration noise are visible red dashed arrows zoom view (Fig. 7b). 
Neglecting anisotropy is used to explain the migration artifacts, but the 
acoustic wave equation is used in both, modelling and the migration 
algorithms. Source acquisition noise present in shallow layers (dotted black 
square) are greatly minimized in the final inverted image and resolution is 
highly boosted. The artifacts in the RTM image are residuals in LSRTM, 
which progressively diminish in the subsequent iterations. As a result, the 
LSRTM generates neater image. Deeper nearly vertical faults and folded 
layers are more apparent in Fig. 6d as compared to 6c due to imbalanced 
amplitudes, low frequency noise and multiple reflection. The Karoo 
formation (Appendix) with anomalously low velocity, it’s very clear and 
continuous on the final image. 
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  A low-quality RTM image is observed in (Fig. 6c) especially in the 
deeper parts of the image, this is probably due to, shielding of thin low 
velocity strata by high velocity strata (strong acoustic impedance and 
velocity contrast) example the Karoo Fm beneath by Kisegi Fm, resulting in 
severe amplitude dissipation inhibiting imaging of the deeper sections due 
to weaker energy. A high quality LSRTM image is obtained after 30 
iterations (Fig. 6d). This is attributed to; 
 
  Firstly, the balancing of the imaging amplitudes resulting in 
improvement in imaging resolution. The LSRTM image amplitudes are 
more accurate and balanced. For example, the deep reflectors in the final 
inverted image, as expected, have almost the same amplitude as the shallow 
reflectors. 
   
 Finally, the LSRTM algorithm uses the inverse operator and the 
deconvolution imaging condition (Yao et al., 2012a) iteratively which 
sharpens the source signature thus high quality in comparison with cross 
correlating imaging condition of RTM which amplifies the source signature 
imprints.  
 

        
 

 
 
 
Fig. 6. Positive flower structure model: a) True Velocity model b) Reference reflectivity 
model, c) RTM image and d) inverted image after application of Laplacian filter. Red 
arrows depict resolution enhancement and amplitude balance in karoo strata. Supression 
of acquisition noise in Fig.6d (black dotted box) red square dotted box zoom view 
sections to compares the degree of image quality, black dotted box depicts enhancement 
in resolution (thin reflector event) in the final image. 
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Fig. 7. Zoom view of the red boxed section in Fig. 6. a) RTM and b) LSRTM image 
showing an increase in resolution (SNR), clear visualization of high angle normal fault 
(black arrow)  and attenuation of  low frequency noise (red arrows) in the inverted image 
as compared to RTM image. 
 
  
    
 Single traces depth profile series  of  true reflectivity, RTM and final 
inverted image were extracted at 1.0 km (off the flower structure) and 
3.0km (through the flower) were extracted (Figs. 8a and 8b), respectively. A 
perfect match in amplitude and phase between true reflectivity  image and 
the final inverted image  at shallower depth for  both locations was noted. 
Noticeable  deviations below 1.0 km depth are noted at both locations 
within the profile series. This is generally attributed to the relatively weaker 
illumination at depth. The deviations are relatively more severe at 3.0 km 
distance (Fig. 8b). Although the flower structure is more illuminated, but the 
complexity of geology within the structure results into noise and slight 
mismatch with the true reflectivity profile. 
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Fig. 8. Comparison between single trace reflectivity depth profiles extracted from the 
reference (black curve), RTM (blue line) and final image (red dotted line). The three-
profile series are extracted at two locations, a) 1.0 km and b) 3.0 km. RTM curve is 
almost constant throughout the profile and final image reflectivity depth profile is in 
phase and approximates the amplitude of the true image. 
 

  
 The unfiltered total wave number spectrum for the true image, RTM, 
laplaced RTM, LSRTM at the 10th iteration and final inverted image (Fig.9) 
was obtained by calculating the wave number spectra of each trace in the 
vertical direction and adding the spectra of each trace in the horizontal 
direction. The final inverted image closely approximates the true image 
spectrum so does the 10th iteration image to the final image spectrum, and 
weak correlation is observed between RTM and true image. This is 
attributed to the strong low frequency noise in the RTM image. It can be 
concluded that LSRTM maintains the spectral component of each wave, 
recovered high frequency energy with increasing iteration. This portrays the 
potential of the LSRTM algorithm to improve on the imaging resolution. 

a) b
) 
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Fig. 9. Comparision amplitude spectrums for unfiltered RTM, Laplace filtered RTM 
final image at the 10th and 30th iteration and true image. The final image spectrum  
closely approximates the true image. 
 

 

Sensitivity of LSRTM to Random Seismic Noise  
 
 Sensitivity of the LSRTM technique to random noise is analyzed. 
Pre-Stack Common Shot gather data was subjected to varying signal to 
noise ratio (S/N) of Gaussian probability distribution type. The LSRTM 
images obtained for different signal-to-noise ratios (SNR) after 30 iterations 
(Fig. 10) below. As it can be seen Fig. 10a, application of small amount of 
noise, the inverted image is a clear almost equivalent to LSRTM image 
without application of noise (Fig. 6d). Even deep layers and high angle fault 
imaging are visible. Noise intensity in imaging results increase with the 
decreasing S/N of the data. In (Figs. 10b and 10c), deep layers, zones of 
intense velocity contrast associated with weak reflected wave energy are the 
most severely affected, while shallow layers and inclined fault with strong 
reflected wave energy are accurately imaged. In case signal equates to noise 
(Fig. 10d) a blurred image and our flower structure is totally obliterated. 
Thin layers sandwiched within high velocity contrast layers (Karoo) and 
deeper regions are almost annihilated in the noise.  
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Fig. 10.  Laplace filtered  Final inverted Images from noisy shot data Gaussian noise. 
a) S/N = 20.0,  b) 10.0,  c) 5.0 and  d) 1.0 dB. 

 
 
Fig. 11.  Normalized data residual convergence curves of  S/N = 100 dB, S/N = 20 dB, 
S/N = 10 dB, S/N = 5 dB, and SNR = 1.0 dB for the positive flower model. 
 

0

1

2

3

D
ep

th
 (k

m
)

0 1 2 3 4 5 6
Distance (km)

-5

0

5

x10 -8

R
ef

le
ct

iv
ity

0

1

2

3

D
ep

th
 (k

m
)

0 1 2 3 4 5 6
Distance (km)

-5

0

5

x10 -8

R
ef

le
ct

iv
ity

0

1

2

3

D
ep

th
 (k

m
)

0 1 2 3 4 5 6
Distance (km)

-5

0

5

x10 -8

R
ef

le
ct

iv
ity

0

1

2

3

D
ep

th
 (k

m
)

0 1 2 3 4 5 6
Distance (km)

-1

0

1

x10 -7

R
ef

le
ct

iv
ity

a)  

c)  

b)  

d)  



 
 541 

 Normalized data residual convergence curves for the observed data 
with different S/N ratios (S/N = 1.0, 5.0, 10.0, 20.0 and 100.0) are displayed 
(Fig. 11). It is very clear from the plot that for high S/N > 10.0 a high 
convergence rate at less than 5 iteration is noted. Constant plots (green 
curve) observed at S/N = 1.0 dB. 
 
 We extracted reflectivity depth logs at 3.0 km within the flower 
structure (Fig. 12). As can be seen with a low signal data, i.e, S/N = 1 the 
reflectivity plot is comprised of erroneous events as compared to the high 
S/N = 20 which is both in phase and closely approximates the reference 
profile (dotted red rectangle). Combining the imaging results, normalized 
residual plot and reflectivity depth profile it can be concluded that LSRTM 
algorithm is robust and converges at high S/N ratio above 10 dB. 

 
 
Fig. 12. Comparison between single trace reflectivity depth profiles extracted from the 
reference/ true (black curve), unfiltered LSRTM images (30th iteration) after applying 
Gaussian noise at S/N = 1.0, 5.0 and 20.0 dB midway 3.0 km. Our technique successfully 
attenuates noise for S/N > 10.0 thus closely approximates reference (red dotted 
rectangle) in shallower layers. 
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CONCLUSION 
 
l The conventional constant density acoustic LSRTM technique greatly 

enhances imaging result in comparison with RTM (LSRTM @ 1st 
iteration) in all the two built velocity models as described in the 
numerical modeling section. RTM images are highly distorted by a low-
frequency noise component, acquisition noise and LSRTM images were 
better resolved with better amplitude balance for successive iteration 
number. 

l Balanced amplitudes and phase accuracy boost with increase in the 
iteration number this is very clear with the single trace comparison plots 
in all models (Iteration 30 the reflectivity curve approximates the 
reference curve). 

l LSRTM technique is highly recommended for migrating data in 
geologically complex subsurface basins including the Albertine graben 
with a network of numerous transpressional/positive flower structures 
and micro stratum with a high velocity contrast. 

l LSRTM techniques is highly sensitive to noise. From the numerical 
results it works best in limited noise acquisition setup. Thus, good 
imaging results are obtained at high signal noise ratio above 10.0dB. 
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APPENDIX  
 

 
 

Fig. A-1. Stratigraphical model of the positive flower structure - Albertine graben. 

 

 


