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ABSTRACT 
 
Zhang, L., Shi, W.G., Hou. Z.G., Ren, Y.X. and Wang, R.R., 2023. Suppressing the 
low-frequency noise in reverse-time migration utilizing the non-reflecting wave equation. 
Journal of Seismic Exploration. 32: 1-20. 
 

As a high-precision geophysical imaging method, reverse-time migration (RTM) is 
widely used in seismic exploration. However, the imaging quality in RTM is susceptible 
to low-frequency noise, which is chiefly caused by unwanted cross-correlation of 
reflections. In order to remove the low-frequency noise, the non-reflecting wave equation 
can be introduced to RTM. On this basis, we propose an improved RTM method 
utilizing the non-reflecting wave equation to achieve low-frequency noise suppression in 
prestack acoustic RTM. Specifically, the non- reflecting wave equation is only used in 
the process reverse- time wavefield simulation, to take advantage of its ability of 
weakening reflections. Accordingly, abnormal imaging points attributable to reflections 
can be reduced. We evaluated the denoising effect through numerical examples including 
a simple layered model, a concave model, and the complicated Marmousi model. The 
results show that low-frequency noise can be effectively suppressed by introducing the 
non-reflecting wave equation into RTM. This improved RTM method can achieve better 
imaging with less low-frequency noise compared with conventional RTM method. 
Moreover, the improved RTM method ensures computational efficiency without 
increasing storage demands. 

 
KEYWORDS: reverse-time migration, low-frequency noise,  
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INTRODUCTION 
 
Migration is one of the most popular imaging methods in the field of 

seismic exploration (Fowler, 1997). In recent years, reverse-time migration 
(RTM) has been developed rapidly owing to its excellent imaging accuracy. 
Because of utilizing full-wavefield information through the application of 
the two-way wave equation, RTM can handle the limitation of inclination 
angle in imaging well. Meanwhile, it can effectively image interfaces with 
strong changes in velocity, density and other physical properties (Yoon et al., 
2004). The concept of RTM was first proposed in 1983 (Mcmechan, 1983; 
Whitmore, 1983; Baysal et al., 1983; Loewenthal et al., 1983). Later, Levin 
et al. (1983) discussed the principle of RTM and presented its procedure. 
Subsequently, many scholars studied it from various aspects (Wang, 2000; 
Symes, 2007; Foltinek et al., 2009, Dai et al., 2013; Araya et al., 2009; Chen 
et al., 2019). At present, RTM has realized the development from acoustic 
wave equation to elastic wave equation and then to viscoelastic wave 
equation (Chang et al., 1987; Zhu et al., 2017; Wang et al., 2018), from 2D 
numerical simulation to 3D field data processing (Lesage et al. 2008), from 
the study of isotropic media to anisotropic media (Fletcher et al. 2009), and 
from poststack data processing to prestack data processing (Karazincir et al., 
2006; Chattopadhyay et al., 2008; Xu et al., 2010). 

 
The implementation of RTM can be presented as three main key steps 

(Fisher et al., 1992): extrapolating the source wavefield forward in time 
based on the two-way wave equation, extrapolating the receiver wavefield 
inversely in time, and imaging using imaging conditions (Sava et al., 2006; 
Liu et al., 2007; Sava et al., 2008). Cross-correlation is an effective imaging 
condition. It is based on the principle of time-consistency (Claerbout, 1971). 
When applying the cross-correlation imaging condition (Kaelin et al., 2006; 
Youn et al., 2001), an imaging point exists irrespective of real or abnormal 
imaging points as long as the extracted imaging time is consistent. 
Abnormal imaging points described previously are often called 
low-frequency noise, which will seriously interfere with the quality of 
image and further interpretation of data (Valenciano et al., 2003). 

 
Extensive efforts have been made to suppress low-frequency noise. 

They can be mainly divided into two categories (Guitton, 2005; Kang et al., 
2012). The first is denoising during the application of imaging conditions. It 
can be realized by following means: 

 
(1) Applying the Poynting vector to suppress low-frequency noise. 

When applying this denoising method, the choice of denoising angle based 
on empirical values may lead to some points that cannot be directly 
calculated. Such points will further limit the denoising effect. Moreover, this 
method realizes angle-domain imaging by extracting the angle information 
of source and receiver, which will significantly increase its computational 
complexity and storage requirement (Ren et al., 2015; Chen et al., 2014). 

 
(2) Separating wavefield according to the direction of wavefield 

propagation to suppress low-frequency noise. In this approach, the 
wavefield is decomposed into up-, down-, right-, and left-going waves. 
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However, it is difficult to effectively separate traveling waves from different 
directions in complex geological structures. In addition, the calculation and 
storage costs will be significantly increased because the wavefield should be 
recorded from different directions separately at the same time. This may 
pose a big challenge in processing massive amounts of data (Wang et al., 
2008; Mehta et al., 2007). 

 
The second is denoising by filtering (Shapiro, 1970; Verschuur et al., 

1997). It mainly includes high-pass filtering, least-squares filtering with 
prediction-error filters (Xue et al., 2016), fan filtering plus wavefield 
decomposition (Suh et al., 2009), and Laplace filtering (Liu et al., 2010). All 
filtering denoising methods have the common problem of losing effective 
amplitudes. As the common and effective filtering method (Kim et al., 
2013), Laplace filtering has the common problem of the direct filtering 
method mentioned above. In addition, more serious high-frequency noise 
will be generated while suppressing low-frequency noise, which will affect 
the imaging quality of high-steep fault structures in complex areas. 

 
In this study, we focus on suppressing low-frequency noise during 

wavefield propagation. In other words, reflections are suppressed by 
modifying the wave equation in reverse time wavefield propagation to 
achieve the final purpose of suppressing low-frequency noise. Some 
scholars have conducted research from different aspects aiming at 
suppressing reflections (Zhu et al., 1989; Wang et al., 1993; Wu et al., 2000). 
Baysal et al. (1984) firstly proposed the two-way non-reflecting wave 
equation, which can avoid interlayer reverberations. Du et al. proposed the 
forward simulation algorithm of staggered grid finite difference form based 
on non-reflecting wave equation, and applied it in embankment forward 
simulation (Du et al., 2002). Zhang et al. (2009) proposed a new 
non-reflecting recursive RTM algorithm to image ragged surface by 
introducing the wave-impedance function into the non-reflecting acoustic 
wave equation. However, these studies only explored the application of this 
method to post-stack data. 

 
Inspired by them, the non-reflecting wave equation is introduced into 

acoustic RTM prestack data process to suppress low-frequency noise. In this 
paper, we present three representative simulating examples, including a 
simple layered model, a concave model, and the complicated Marmousi 
model, to illustrate the efficiency of this method. 

 
 
METHOD 
 

Acoustic reverse-time migration (RTM) is a common imaging method. 
This method can not only ensure certain imaging effects, but it is also 
relatively simple compared with the elastic wave method. At present, it has 
been widely used in practical production. The form of the full acoustic wave 
equation under inhomogeneous condition [eq. (1)], and the acoustic wave 
equation under constant density and isotropy condition [eq. (2)] are 
presented here. 
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where P denotes the pressure function; x and z represent the horizontal and 
vertical directions, respectively; ρ  is the density of the medium; v is the 
velocity of acoustic wave in the medium; and t is the time variable. 

 
Eq. (2) is the common wave equation describing the propagation 

characteristics of waves in seismic simulation. However, this equation will 
lead to strong reflections when waves meet the interface, which can further 
generate low-frequency noise in RTM. Therefore, an acoustic wave 
equation that can effectively suppress reflections of interface becomes the 
key in suppressing low-frequency noise in RTM. 

 
 
 
Non-reflecting Wave Equation 

 
Baysal et al. (1984) proposed the non-reflecting wave equation in order 

to describe the weak-reflection propagation characteristics of wavefield 
simulation. Firstly, the derivation of non-reflecting wave equation is shown 
here. Theoretically, reflections will not occur without physical differences. 
Here, we can simply interpret the physical properties as wave-impedance. In 
order to suppress reflection in theory, we can assume that media on both 
sides of the geological interface have the same wave-impedance. Then, the 
form of the non-reflecting wave equation can be easily obtained in eq. (4) 
by introducing the wave-impedance equation eq. (3) into full acoustic wave 
equation eq. (1). 

 
v cρ =   ,                                              (3) 
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where c is a constant representing the same wave-impedance. 

 

Comparing the non-reflecting wave equation eq. (4) with the 

conventional acoustic wave equation eq. (2), it is obvious that an additional 
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term is added on the right side of the non-reflecting wave equation. This 

additional term provides the theoretical basis of weakening reflections 

during the wavefield simulation process. Taking velocity and stress as basic 

unknowns, the non-reflecting wave equation can be transformed to the form 

of the first-order velocity-stress equation shown in eq. (5). In particular, V = 

∂P/∂t is the velocity variable,  τ x =v
∂P
∂x  and τ z =v

∂P
∂z   are the 

equivalent stresses in the X- and Z-directions, respeτctively. 
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   .                             (5) 

 
Improved RTM Based on Non-reflecting Wave Equation 

 
Considering the ability of the non-reflecting wave equation to weaken 

reflections, we proposed the improved RTM method based on the 
non-reflecting wave equation. Specifically, the non-reflecting wave equation 
is applied in the reverse wavefield propagations of RTM to weaken 
reflections, and the low-frequency noise caused by the imaging of unwanted 
reflection is then suppressed. Here, the denoising mechanism of the 
improved RTM method based on the non-reflecting wave equation in 
imaging is presented. 

 
For concrete imaging using RTM, we often use the cross-correlation 

imaging condition, which is based on the principle of the time-consistency 
criterion. For a fixed source and receiver array, all positions satisfying that 
the sum of forward time of the source and reverse time of the receiver is 
equal to the travel time, will be considered as real imaging points. Here, we 
introduce a horizontal layered model to explain the reason for the 
suppression of low-frequency noise by the non-reflecting wave equation in 
the RTM process. 
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As shown in Fig. 1, point A is the true imaging point representing the 
interface position, and B is one of the abnormal imaging points selected 
randomly. Abnormal points such as B will finally form what is often known 
as low-frequency noise. In order to distinguish the formation process of A 
and B, the corresponding path of B is shifted to the right slightly. Owing to 
the application of the non-reflecting wave equation, reflections from the 
interface, shown as the red dotted line in Fig. 1, will be suppressed. 
Naturally, the wrong imaging process shown in the dotted line will no 
longer exist, whereas the true imaging process shown by the solid line is 
retained. Other abnormal imaging points can be analogized to point B. 
Based on this, the suppression of low-frequency noise in RTM can be 
finally achieved. In an ideal case, the RTM method based on the 
non-reflecting wave equation images only points on the interface, which 
will make the imaging results clearer. 

 

 
 

Fig. 1. Schematic diagram of low-frequency noise suppression. Point A is the correct 
imaging point. Point B is one of the abnormal imaging points selected randomly. S 
represents the source point. R represents the receiver. The gray line is the propagation 
path satisfying the time-consistency imaging criterion. The solid and dotted lines are the 
imaging processes of points A and B, respectively. The red and blue lines represent the 
forward propagation path excited by the source and receiver, respectively. 
 
 
Absorbing Boundary Condition of Improved RTM 

 
We also use the perfectly matched layer (PML) absorbing boundary 

condition to eliminate the interference of boundary reflections in the 
improved RTM. The PML absorbing boundary condition is a method 
proposed by Bérenger in electromagnetics (Bérenger et al., 2007). The basic 
principle of PML is to add a virtual anisotropic media around the calculation 
region. Then, the outgoing seismic wave can be absorbed by the outer 
boundary gradually. PML can satisfy the absorption effect of boundary 
reflections over a wide frequency band and large incident angle range. 
Moreover, it demands very limited storage and calculation costs (Drossaert 
et al., 2007; Zhang et al., 2010). The form of PML is given in eq. (6): 
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      (6) 
where jψ , jτ , and jω  are introduced as instrumental variables, and j  
represents the direction of x and z. Usually, we use the empirical value 

1jκ = . Other detailed information can be referred from the literature 
mentioned above. 
 
 
Implementation of the Improved RTM 

 
We proposed an improved RTM method that can weaken 

low-frequency noise. The non-reflecting wave equation is used in the 
reverse simulation of the receiver of RTM to weaken reflections. 
Furthermore, imaging results with less low-frequency noise can be obtained 
by using cross-correlation imaging conditions. Fig. 2 presents flow charts of 
the traditional and improved RTM methods. According to the figure, the 
improved RTM has appears to have fewer steps for implementation 
compared to the traditional RTM. In addition, the improved RTM can 
suppress low-frequency noise during the wavefield propagation, whereas the 
traditional RTM requires extra denoising steps, such as applying imaging 
conditions and post filtering. Here, we present the three main steps of the 
improved RTM method as follows: 

 
(1) Forward modeling based on the traditional wave equation, 

recording the information matrix containing the characteristics of forward 
wavefield simultaneously; 

 
(2) Simulating the reverse-time wavefield under the non-reflecting 

wave equation while recording the wavefield matrix; 
 
(3) Applying cross-correlation conditions to obtain the final RTM 

imaging results with less low-frequency noise. 
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Fig. 2. Flow chart of RTM based on (a) the traditional and (b) non-reflecting acoustic 
wave equation. The red dotted frames denote the main denoising steps of the traditional 
RTM methods. 
 
 
EXAMPLES 
 
Simple Layered Model 
 

We investigate the efficiency of low-frequency noise suppression of 
the improved RTM using a very simple two-layered model. As shown in 
Fig.3, the model has an upper velocity of 2000 m/s and a lower velocity of 
3000 m/s. The Ricker wavelet with a peak frequency of 40 Hz is adopted 
here. The grid is set as 240×140 with a grid spacing of 2 m in both X- and 
Z-directions. The sampling interval is 0.2 ms and the recording length is 
0.5s. A point source is set in the position of X = 240 m and Z = 2 m. To 
record the seismogram, 48 receivers are equally located at X = 0, 10, 20, 
30 ..... 480 m and Z = 2 m. The PML boundary condition with a layer of 30 
is applied to the numerical simulation of the model. Fig. 4(a) and Fig. 4(b) 
illustrate forward seismograms of the traditional and non-reflecting wave 
equations after muting direct waves. From the results, reflections are 
obviously suppressed for the improved RTM method. A single-trace seismic 
wavelet recorded by the 3st receiver is selected to quantitatively analyze the 
effect of the non-reflecting wave equation, which is shown in Fig. 5. The 
peak of positive amplitude based on the traditional acoustic wave equation 
is 0.013, while it is 0.003 for the non-reflecting forward simulation. 
Meanwhile, the peak negative amplitude of the reflected-wave based on the 
traditional acoustic wave equation is 0.01, while that of the non-reflecting 
forward simulation is 0.002. In other words, the peak amplitude could be 
reduced to about a quarter of the original peak amplitude by the applying 
non-reflecting wave equation. The comparison result of the two different 
forward simulation proves that the non-reflecting wave equation method can 
effectively suppress reflections. 
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Fig. 3. Velocity model used for modelling the simple horizontal structure. 

 

 
 
Fig. 4. (a) Seismogram of conventional forward-simulation results for the layered model. 
(b) Seismogram of non-reflecting forward-simulation results for the layered model. 
 
 
 

On the basis of forward simulation analysis for the simple layered 
model, RTM results based on different acoustic wave equations are 
discussed below. For better contrasting the denoising effect of conventional 
and improved RTM, we use the true velocity model as the initial model.  
Fig. 6(a) shows the imaging result of the traditional RTM method. Fig. 6(b) 
shows the imaging result of the improved RTM method. The results of both 
the conventional and improved RTM method clearly depict the location of 
the geological interface correctly. Intuitively, the two sides of the interface 
are not well displayed due to the limitation of the single source. However, 
the artefact area denoted by the red dotted box in Fig. 6(b) is much smaller 
than that in Fig. 6(a), especially in the area near the source point. Moreover, 
the improved RTM method facilitates seismic illumination (Kaelin et al. 
2006). Indeed, the artifact area represents low-frequency noise. 



	
10 

 

 

 
 
Fig. 5. Seismic record of Trace 3. The red dotted line and the blue solid line represent the 
results of the traditional and non-reflecting forward simulation, respectively. TEQ and 
NEQ stand for the traditional and non-reflecting acoustic wave equations, respectively. 

 

 
Fig. 6. Imaging results of the simple layered model using (a) the conventional RTM and 
(b) the improved RTM. The red dotted box denotes the low-frequency noise area. The 
red solid line denotes the interface between different media. 
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Through spectrum analysis, the imaging data are transformed from the 
time-domain to the frequency-domain, which can help explain the effect of 
low-frequency suppression. In the two-dimensional spectrum, the change in 
position from the surrounding area to the center represents the frequency 
change from high to low, and the color intensity from dark to light indicates 
the energy from strong to weak. Considering the two indicators, the 
low-frequency noise in Fig. 7(a) is stronger than that in Fig. 7(b). In 
addition, the intensity index of low-frequency noise (ILN) is introduced as a 
parameter to quantitatively analyzing low-frequency noise. The calculation 
principle of ILN is to transform the imaging data to the frequency domain 
through two-dimensional Fourier transformation. Low-pass filtering is then 
carried out according to empirical values. ILN is finally obtained through 
the calculation of two norm of the filtered imaging data. The value of ILN 
represents the intensity of low-frequency noise: the larger the value, the 
stronger the low-frequency noise. As shown in Table 1, the ILN values for 
the traditional RTM and improved RTM are 53.53 and 33.18, respectively. 
The results show that the low-frequency noise is weaker for the improved 
method than for the traditional method. According to the above analysis, we 
can finally draw the conclusion that the improved RTM is more effective in 
denoising. 

 

 
Fig. 7.  (a) 2D Spectrum of conventional  RTM  imaging data for the layered model. 
(b) 2D Spectrum of improved RTM imaging data for the layered model. The Kx- and 
Kz-axes represent the normalized wavenumber in the x- and z-directions, respectively. 
 
 
Concave Model 

 
The denoising effectiveness of the improved RTM for imaging steep 

dips is also evaluated. A concave velocity model with a left inclination of 60 
degree and a right inclination of 30 degree is introduced, whose size is 
600×190 m, as shown in Fig. 8. The upper and lower velocities of the 
concave model are 2000 m/s and 3000 m/s, respectively. The source wavelet, 
sampling interval, grid size, and PML absorbing boundary condition are 
same as in the simple layered model. The recording length is set as 1 s, A 
single source is located at X = 300 m and Z = 2 m, and 60 receivers are 
evenly distributed by 10 m in the x-direction and located at Z = 2 m. The 



	
12 

 

forward simulation of the concave velocity model is performed firstly. Fig. 
9(a) and Fig. 9(b) are seismograms of forward simulation based on the 
traditional acoustic wave equation and non-reflecting wave equation, 
respectively. The black, blue, and red arrows correspond to the seismogram 
of the reflections for the left inclined, lower horizontal, and right inclined 
interfaces, respectively. The only part of the seismograms with valid 
information is shown on the figure. In the seismograms, all reflections 
marked by arrows in Fig. 9(b) are suppressed better than those in Fig. 9(a). 
For clearly distinguishing the reflections from different interfaces, data of 
the 55th trace are selected for further comparative analysis. Fig. 10 
illustrates the wavelet of the seismic data picked up by the 55th receiver. In 
the figure, reflections from the right inclined, lower horizontal, and left 
inclined interfaces marked by yellow, black, and green dotted frames are 
suppressed to varying degrees. 

 

 

 

Fig. 8. Velocity model used for modeling the concave structure. 

 

 
 

Fig. 9.  (a) Seismogram of the conventional forward-simulation for the concave model. 
(b) Seismogram of the non-reflecting forward-simulation for the concave model. The red 
arrows denote reflections. The red, blue, and red arrows correspond to the seismograms 
of reflections for the left inclined, lower horizontal, and right inclined interfaces, 
respectively. 
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Fig. 10. Seismic record of Trace 55. The red dotted line and the blue solid line represent 
the results of the traditional and non-reflecting forward simulations, respectively. The 
yellow, black, and green dotted frames represent the wavelet of the right inclined, lower 
horizontal, and left inclined interfaces, respectively. TEQ and NEQ stand for the 
traditional and non-reflecting acoustic wave equations, respectively. 

 
 
Fig. 11(a) and Fig. 11(b) show the imaging results of the traditional 

and improved RTM methods, when the true concave velocity model are 
considered as the initial model. Both methods achieved the generation of 
contour lines, which could be judged by comparing the imaging position 
with the actual interface shown by the black solid line. The artifact area of 
Fig. 11(b) denoted by the black arrows is smaller than that in Fig. 11(a), 
which can be mainly reflected in the location near the source point marked 
with black arrows and the groove area. Meanwhile, the intensity of 
low-frequency noise reflected by color scales in Fig. 11(b) is weaker than 
that in Fig. 11(a). 

 

 
 

Fig. 11. Imaging results of the concave model using (a) the conventional RTM and (b) 
the improved RTM. The red arrows denote the area of low-frequency noise. The red 
solid line denotes the interface between different media. 
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In addition, 2D spectrum and ILN mentioned above are introduced to 
qualitatively and quantitatively analyze the intensity of low-frequency noise. 
The low-frequency noise range of the conventional RTM shown in Fig. 12(b) 
is smaller than that in Fig. 12(a). ILN of the improved RTM is 81.29, 
whereas that of the traditional RTM is 189.96, as shown in Table 1. The 
quantitative and qualitative comparison strongly proved the effectiveness of 
the improved RTM in both dip structure imaging and low-frequency noise 
suppression. 

 

 
 
 
Fig. 12. (a) 2D Spectrum of conventional RTM imaging data for the concave model. (b) 
2D Spectrum of improved RTM imaging data for the concave model. The Kx- and Kz- 
axes represent the normalized wavenumber in X- and Z-directions, respectively. 
 
 
Marmousi Model 

 
We test the denoising efficiency of the improved RTM method for 

complex geological models by introducing the Marmousi model (Bourgeois 
et al. 1990). The Original Marmousi model is resampled to the model space 
of 215 ×700 with velocity ranging from 1200 m/s to 4700 m/s, as shown in 
Fig. 13(a). 

 
A wavelet source with a peak frequency of 20 Hz is adopted in the 

synthetic experiment. The grid size is   m, the time window is 2 s, and the 
time step is   s. We still use the true Marmousi velocity model to test the 
denoising effect for the low-frequency noise. 70 shots are eventually located 
at the top of the Marmousi model (z = 5 m). On the same horizontal line as 
the source, 140 receivers are equally distributed. The imaging artifacts 
caused by low-frequency noise in Fig. 13(b) is stronger than that in Fig. 
13(c), especially in the area denoted by the red dashed box. For a clearer 
comparison, the enlarged view of the area marked by the red dashed box in 
Fig. 13(b) and Fig. 13(c) are given in Fig. 14(a) and Fig. 14(b), respectively. 
In Fig. 14(a), the imaging area is completely obscured by the imaging noise, 
which look like the dispersion of seismic record. In contrast, Fig. 14(b) is 
much clearer with a higher imaging resolution. Through above analysis, the 
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RTM method based on non-reflecting wave equation can overcome the 
imaging noise problem to a certain extent, which proves that the proposed 
method is also applicable to complex models. 

 

 
 
Fig. 13. (a) Marmousi velocity model. Imaging results of the simple layered model using 
(b) the conventional RTM and (c) the improved RTM. 
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Fig. 14. The enlarged view of the area marked by the red dotted rectangle in (a) Fig. 13(b) 
and (b) Fig. 13(c). 
 
 

 In addition, we also adhibit parameter ILN described above to 
quantitatively analyze the intensity of low-frequency noise between the two 
RTM methods. Table1 shows ILN values of the two RTM methods. $ILN$ 
of the improved method is only 66.68, whereas that of the traditional 
method reached 69.48. This further reveals the effectiveness of the 
improved RTM in suppressing low-frequency. 

 

Table 1. ILN of traditional and improved RTM methods. 

 

RTM Layered Model Concave 

Model 

Marmousi Model 

Traditiona

l RTM 

53.53 189.96 69.48 

Improved 

RTM 

33.18 81.29 66.68 
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DISCUSSION 
 
In this paper, we proposed an improved RTM method based on the 

non-reflecting wave equation. Through comparisons of imaging results of 
the layered, concave, and Marmousi models, the improved RTM was found 
to be advantageous over the traditional RTM method regarding 
low-frequency noise suppression. However, the imaging artifacts of low 
frequency noise could not be eliminated completely. Furthermore, the 
proposed method has several limitations. 

 
The non-reflecting wave equation is derived on the assumption that the 

same wave-impedance means no reflection in theory. However, the 
assumption only exists in the case of vertical incidence or small incident 
angle. Therefore, when the incident angle is large, the effect of reflection 
suppression will be limited. This is the reason why the low-frequency noise 
could not be handled perfectly when applying the improved method. 

 
Therefore, we consider introducing the reflection-coefficient function 

according to the dip angle of structures into the non-reflecting wave 
equation. After obtaining the wavefield information of each time step, 
incident angle prediction can be performed according to the characteristics 
of geological continuity. Then the incident angle can be substituted into the 
reflection coefficient calculation process to realize the angle-adaptive RTM 
iterative algorithm. The RTM method based on the angle-adaptive 
non-reflecting wave equation would afford better low-frequency noise 
suppression effect in theory. 

 
 

CONCLUSIONS 
 
Low-frequency noise arising in reverse-time migration (RTM) are 

mainly caused by wrong cross-correlation of reflections. We attempted to 
suppress low-frequency noise in the process of wavefield simulation. We 
proposed an improved acoustic RTM based on the non-reflecting wave 
equation for prestack data processing. The non-reflecting wave-equation 
was introduced to RTM to suppress reflections in reverse simulations. Then, 
low-frequency noise produced by reflections could be suppressed during the 
application of cross-correlation imaging conditions. The method could 
achieve the purpose of suppressing low-frequency noise in RTM. 
Furthermore, the computational efficiency and storage were almost 
unaffected compared with the conventional method. 
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