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ABSTRACT 
 
Azizzadeh Mehmandost Olya, B. and Mohebian, R., 2023. Q-factor estimation from 
Vertical Seismic Profiling (VSP) with deep learning algorithm, CUDNNLSTM. Journal 
of Seismic Exploration, 32: 89-104. 
 
 As seismic reflection waves pass through the different layers and formations of 
the Earth, they are affected by the attenuation phenomenon that occurs after passing 
through each layer. One of the most effective and important criteria that can be used in 
the assessment of attenuation is to check the amount of the Q-value. This value can be 
used to monitor the amount of attenuation. A key point to remember is that the 
calculation of Q is always associated with various computational and operational 
challenges; in other words, the value of Q cannot be calculated in all of the wells that are 
in a hydrocarbon field. 
 
 The purpose of this paper is to present an approach to the problem of estimating 
the Q-factor by using the latest artificial intelligence method, which is deep learning. By 
using the CUDNNLSTM algorithm in this paper, we were able to estimate the Q-factor 
accurately. we achieved an accuracy of 98.5% and a validation loss of 1.3% in estimating 
the Q-factor. With our Q-factor estimating by deep learning, along with speeding up 
calculations, we will be able to resolve the problem of lacking suitable VSP seismic data 
to calculate the Q-factor, as well. 
 
KEY WORDS: Q-factor, Vertical Seismic Profiling (VSP), deep learning algorithm,  
    CUDNNLSTM. 
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INTRODUCTION 
 
 The Quality factor (Q) of seismic waves is a rock property and a 
measurement of the anelastic attenuation of seismic waves, and it also is a 
parameter that quantifies the frequency-dependent attenuation through 
anelastic absorption, which affects the phase and resolution of the seismic 
signal (Wang et al., 2015; Castagna et al., 2003). In general, high Q-values 
reveal minimal attenuation, while low Q-values signify significant 
attenuation (Rubino et al., 2012). Since the downgoing pulse from the VSP 
can be isolated at each depth down the well, it is like a snapshot of the 
downgoing wavefield at each geophone depth. Therefore, the VSP provides 
an ideal opportunity to measure Q directly and observe how its 
compensation makes an impact on it. The Q-factor is calculated by 
measuring the changes in frequency content between depth levels (Turhan 
Taner and Treitel, 2003). In a given frequency band, spectral ratios are 
calculated between levels, which are determined by the data frequency 
content. The slope of the spectral ratios can be used as a mathematical 
equation to determine the value of Q-factor (Matheney and Nowack, 1995). 
Researchers have presented several different solutions to the issue of 
determining seismic attenuation in recent decades and many researchers 
have presented essays on the subject (Xue et al., 2020; Hauge, 1981). 
Furthermore, it has also been demonstrated that accurate Q-estimation can 
work to improve the resolution of seismic data, and consequently help better 
detect hydrocarbons and understand seismic data (An, 2015; Sain and 
Kumar Singh, 2011). Tonn (1991) showed that when the signal-to-noise 
ratio is low, the majority of seismic attenuation calculation methods are 
ineffective, but for high signal-to-noise ratios, the spectral ratio method can 
be extremely useful (Tonn, 1990). One of the suitable Q-estimation methods 
is to measure the decrease in wave amplitude with distance. Although this 
approach, like the rise time approach (Gladwin and Stacey, 1974) and the 
analytical signal method (Engelhard, 1996), may need to know accurate 
amplitude data, which is not always available. The attenuation of frequency 
can also be measured by other methods, such as the spectral ratio method 
(Hauge, 1981; Blias, 2012; Guerra and Leaney, 2006). Moreover, some 
researchers have assessed the performance of most of the existing Q-
estimation methods, and they found that each of them performed better 
under different conditions (Tonn, 1990; Jannsen et al., 1985). For a 
Canadian oilfield, Haase and Stewart applied spectral ratio methods and 
VSP-sonic drift curves in 2004 to find the Q-factor (Haase and Stewart, 
2004). Liu et al. (2018) Proposed a modified log spectral ratio (MLSR) 
approach that calculates Q-factor from seismic common midpoint (CMP) 
data. A non-linear inversion of spectral ratios using Levenberg-Marquardt 
techniques was proposed by Sangwan et al. (2019) as a remedy for the noise 
sensitivity of conventional spectral ratio methods (Marquardt, 1963; 
Levenberg, 1944). VSP data was used to verify the accuracy of the estimated 
Q-factor and it was concluded that the proposed methodology performs 
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effectively when the signal-to-noise ratio is low (Sangwan et al., 2019). The 
importance of Q-factor estimation is very wide and in 2021, Vesnaver and 
his colleagues were able to detection the Geofluid and fractures in the 
specific geological zone in the Northern Adriatic Sea region using 
broadband Q-factor (Vesnaver et al., 2021). In 2022, Mirzanejad and et al. 
using Q-factor for track siemic attenuation and wave propagtion for Full-
waveform inversion (FWI) methods by developing 3-dimantional Gauss-
Newton optimization (Mirzanejad et al., 2022). In this paper unlike of last 
research, we foucaed on a new approach to estimate the Q-factor. Deep 
learning is a subbranch of artificial intelligence that have very complex and 
robust algorithms for estimating than machine learning algorithms so we 
developed a new workflow that is based on a deep learning algorithm 
(CUDNNLSTM) to estimate the Q-factor which has low uncertainty and 
high accuracy than past estimating Q-factor methods and algorithms. 
 
 
MATERIALS AND METHODS 
 
Spectral Ratio Q Estimation method 
 
 During seismic propagation, we have to characterize the effect of 
anelastic attenuation on the seismic signal. The anelastic attenuation can be 
estimated using VSP datasets (Q-factor). Compression waves derived from 
the VSP are used to characterize the transmission effect of the overburden. 
To diminish the effects of anelastic attenuation, the Q-factor can be used to 
derive a Q-filter. 
 
 Data from two receiver depths are selected along with an assumed 
constant Q-medium using spectral ratios as one of the robust and efficient 
methods for Q-estimation. Accordingly, the spectral amplitude A at 
frequency and time t2 is related to the spectral amplitude at time t1 by: 
 

𝐴 𝑓،𝑡! = 𝐴(𝑓،𝑡!)𝑒!!"(!!!!!)/!      . 
 
Rearranging and taking the algorithm, 
 

ln
!(! ،!!)

!(! ،!!)
= − 𝜋(𝑡! − 𝑡!) 𝑄  .  

 
 A linear regression of the left-hand side versus frequency therefore 
yields a slope, which is equal to −𝜋(𝑡! − 𝑡!) 𝑄. The concept is 
summarized in Fig. 1. The input variables to Q-estimation using spectral 
ratio method are the low and high frequency cut-offs optional smoothing 
parameters. 
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Fig. 1. Principal of spectral ratio Q-estimation method. 

 
General workflow 
 
 The general workflow used in this article is shown in Fig. 2. 
Generally, this workflow consists of two basic parts: training the algorithm 
and creating the primary data. The above parts will be explained in order. 
	

	

	

	

	

	

	

	

	

	

	

	

	

Fig. 2. General workflow. 
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Primary data Workflow  
 
 For the purpose of obtaining the primary data, we first have to correct 
the data of the SGY file that we have. This includes geometric corrections 
and corrections of the wave amplitude using the RMS method. This will 
enable us to obtain the correct primary data. 
 
 By separating the upgoing waves from those that are downgoing, we 
could then use this information to extract a deconvolution filter. As a result 
of the above process, after performing the Corridorstack process and 
matching the kinetic seismogram with the well data, we were able to obtain 
Q-values using the spectral ratio Q-method after performing the process 
above. As the initial feed of the deep learning algorithm, the Q-value 
obtained in this part is used (Fig. 3). 
	

	

	

	

	

	

	

	

	

	

Fig. 3. Primary data process.  

 
PRELIMINARY DATA RESULTS 
 
Calculated initial Q-factor for deep learning algorithm feed 
 
 For the purpose of training any deep learning algorithm, as we 
mentioned at the end of the previous section, we'll need some input data. 
This section calculates the overall Q-factor for each interval, then converts it 
to the scale of the logging tool we use by using the cumulative wave 
amplitude calculation method. The low-frequency and high-frequency cut-
offs are input variables to the spectral ratio method for estimating the Q-
factor. We need to select a reference level, preferably as high up the well as 
possible, but we must be careful not to select one influenced by the casing. 
The spectral ratio method was used to calculate Q for the seismic zones 
identified in Table 1 and Fig. 4. 
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Table 1. Seismic horizons and related OWT extracted from VSP data.  

 
	

	

	

	

	

	

	

Figure4: Q-Estimation in different intervals 

	

	

	

	

	

	

	

	

	

	

	

	

Fig. 4. Q-estimation in different intervals. 

	

Formation Measured Depth(m) One Way Time (OWT) 
      Mbr 7 Gachsaran 1967.5 693.76 
      Mbr 4 Gachsaran 2225.5 768.934 
      Asmari  2631.5 875.859 
      Kalhur  2696.5 888.089 
      Massive Anhydrite 3021 958.618 
      Pabdeh 3090.5 975.388 
      Gurpi 3512 1093.45 
      Ilam 3905.5 1193.98 
      Upper Sarvak 4047 1220.59 
      Lower Sarvak 4386 1279.28 
      TD(VSP) 4629.6 1322.67 
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Table 2. Formation Intervals and Estimated Q-values. 

Formation Interval Depth Interval(m) Q interval Vint(m/s) 
Mbr_7Gachsaran-Mbr 4  
Mbr 4 Gachsaran-Asmari 
Asmari-Kalhur 

1967.5-2225.5 75.0 3392.014 
2225.5-2631.5 224.0 3797.054 
2631.5-2696.5 11.0 5314.8 

Kalhur-Massive Anhydrite 
Massive Anhydrite-Pabdeh 

2696.5-3021 66.0 4600.944 
3021-3090.5 12.0 515.4563 

Pabdeh-Gurpi 
Gurpi-Ilam 
Ilam-Upper Sarvak 
Upper Sarvak-Lower Sarvak 

3090.5-3512 180.0 3570.158 
3512-3905.5 53.0 3914.254 
3905.5-4047 190.0 5317.55 
4047-4386 44.0 5776.112 

Lower Sarvak-TD 
 

4386-4629.6 33.0 5614.197 
   

 

 As can be seen from Table 2, different Q-values were achieved for 
different formation intervals. Some formations have high Q and the Q-factor 
is lower for some of them. When the difference between formation 
lithologies is significant, the seismic wave attenuation is high and vice versa. 
In addition to formation lithology, pore spaces and filling fluids can affect 
formation intervals velocity and Q-factor. 
 Studied intervals include sedimentary deposits from Cenomanian 
(Sarvak Formation) to Miocene (Gachsaran Formation) and heterogeneity 
can obviously be observed over the available lithostratigraphic units. 
Member 7 of the Gachsaran Formation is dominantly comprised of red and 
gray marl accompanied with high values of Anhydrite. The main difference 
between member 7 and 4 is the massive Halite (Salt) content. Halite mineral 
extensively increased over member 4 and it has impacted the physical 
properties of this member. Due to this salt content the Q-value has been 
increased. Generally, the Oligo-Miocene Asmari Formation consists of 
carbonate rocks but in this region, an anhydritic member called Kalhor 
member together with frequent Halite layers are also available. A massive 
salt interval is placed at the bottom of Kalhor anhydrites and its thickness 
reaches to 100 meters. The massive Anhydrite layer placed below the Halite 
zone is the last anhydritic member observed during drilling and by 
increasing the depth. this high discrimination between Kalhor to Pabdeh 
formation in terms of density and velocity produces different Q-values and 
decrease Q-estimation until 12. The values of marl, clay and carbonate 
content are increased such that carbonates, clay and gray marls are the 
predominant components formed Gurpi, Pabdeh, Ilam and Sarvak 
Formations. Gurpi and Pabdeh Formations are not considered as a reservoir 
due to lack of effective porosity. Petrophysical properties such as porosity, 
shale volume, fluid types and saturation are the main components controlling 
of Q-variation and rock behavior in Ilam and Sarvak Formations. Hereby, 
variation detected in seismic responses (density, Velocity and Q) along the 
mentioned units directly related to such petrophysical features. 
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CUDNNLSTM, Deep learning algorithm 
 In artificial intelligence today, efficient and diverse algorithms have 
been developed due to advances in technology and programming, including 
deep learning algorithms such as CNN and LSTM.A long short-term 
memory (LSTM) algorithm is based on the basic principles of long and short 
memory, which were presented by Hochreiter and Schmidhuber (1997). To 
explain this algorithm very simply and basic, we can say it intelligently 
selects the data that is needed for the next step and the data that is not 
needed, based on the effectiveness of each data set. In comparison to the 
RNN algorithm, the LSTM algorithm has more complex, intelligent 
structural units, which makes it easier to flow data. 
	
Algorithm architecture and mathematics 
 An LSTM algorithm consists of a series of sequential processing units 
placed next to each other. Depending on the input data, each processing unit 
can make a decision on its own. In Fig. 5, we can see how these units are 
arranged. 
	

	

	

	

	

	

Fig. 5. Algorithm chain overview. 

	

	

 

 

 

 

 

 

 

Fig. 6   . An overview of each unit's internal structure. 
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 Recursion is one of the reasons for the strength and intelligence of this 
algorithm, as shown in Fig. 5. This algorithm has a recursive loop, this field 
allows each unit to act as several separate units. The interior of each unit can 
be seen in Fig. 6. 
 
 According to the LSTM algorithm, data can be intelligently 
categorized according to its usefulness. Fig. 6 shows that a cell receives 3 
inputs, which are input data, result (N-1) and 𝐶!!!. Input data represents our 
data as training, result (N-1) represents the results of the previous unit, and 
𝐶!!!.  represents the previous unit's state. It is not always possible to say that 
an entire data set is useless because it is always possible to extract important 
information from a data set. To distinguish between valid and invalid data, 
the LSTM algorithm uses the sigmoid function, which produces a value 
between 0 and 1. Generally, if the values tend to 0, the data in that cell is not 
useful, and if they tend to 1, the data is important (Fig. 7). 
 

 

	

	

	

 

 

 

 

 

Fig. 7. Sigmoid function. 

	

	 Input data and result (N-1) paths generally have three sigmoid layers. 
The first screening is performed between the data’s so the first output, which 
is calculated as follows: 
 
            𝑓! = 𝜎(𝑊! . 𝑖𝑛𝑝𝑢𝑡 𝑑𝑎𝑡𝑎 , 𝑟𝑒𝑠𝑢𝑙𝑡 𝑁 − 1 + 𝑏!)       . 
  
 After passing through the first gate and multiplying the new data by 
the state equation of the previous unit, the unit must determine which data 
needs to be updated. In order to complete this process, the second and third 
paths are used. Unit data must be updated simultaneously with the equation 
of state of the cell in order to be updated. A Tanh layer is used to update the 
new state vectors of the unit, and the second sigmoid layer is used to 
determine which data needs to be updated. As soon as both of the above are 
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calculated through the following equations, the values are multiplied by each 
other, and then the new value is added to the unit state equation. 
 

𝑖! = 𝜎(𝑊! . 𝑖𝑛𝑝𝑢𝑡 𝑑𝑎𝑡𝑎 , 𝑟𝑒𝑠𝑢𝑙𝑡 𝑁 − 1 + 𝑏!         ,                        
 

𝐶 = tanh (𝑊! . [𝑖𝑛𝑝𝑢𝑡 𝑑𝑎𝑡𝑎 , 𝑟𝑒𝑠𝑢𝑙𝑡 𝑁 − 1 + 𝑏!)       . 
  
 Using the sigmoid and tanh functions, we added new equations to the 
previous unit state equations. According to this equation, the current unit 
state equation is as follows: 
 
            𝐶! =  𝑓! ∗ 𝐶!!! +  𝑖! ∗ 𝐶!     . 
 
 The reason why the equation of state of the previous units flows in the 
next units is very simple, because the LSTM algorithm is inherently used to 
recognize series and sequences, so there is always some learning from the 
previous unit to the new unit to be transferred. The last path involves passing 
the data through the last sigmoid layer and multiplying it by the state 
function that passed through the tanh function. As a result of this operation, 
the unit decides which data to display and which to delete as output. For the 
purposes of clarity, it is important to point out that all (W) represent the 
weight and all (b) represent the bias in the equations. 
 

𝑂! = 𝜎(𝑊! . [𝑖𝑛𝑝𝑢𝑡 𝑑𝑎𝑡𝑎 , 𝑟𝑒𝑠𝑢𝑙𝑡 𝑁 − 1 + 𝑏!) 
           𝑟𝑒𝑠𝑢𝑙𝑡 ! =  𝑂! ∗ tanh 𝐶!  

 
 The LSTM algorithm, as mentioned, has unique features that make 
this algorithm a powerful algorithm, but another important point is that, in 
addition to running on a central processing unit (CPU), this algorithm can be 
run on a Graphics processing unit (GPU). for this reason, it’s great for 
complex and long sequences because the graphics card has many defense 
cores called CUDA, which greatly reduces calculation time. The graphite 
card LSTM algorithm is called CUDNNLSTM. 
 
 
Designing CUDNNLSTM to estimate Q values 
 
 To train supervised algorithms such as CUDNNLSTM, we always 
need training data and training target data. in this article uses four different 
logs, RHOB, DT, VP, and reflection coefficient, because Q-coefficient is 
directly related to the density and velocity of primary sound waves. Firstly, 
we screened all the data sets and separated the data that had problems from 
the main data set so as to make the estimation process more accurate and 
optimal. Our next step was to design the main network of the algorithm. In 
the algorithm we used, we put an LSTM with 1500 layers as the main layer 
and estimator to act as the main processing unit, and then we put a dense 
neural unit with 300 layers as a correction tool for LSTM output data as well 
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as an examination tool for LSTM output. All estimator algorithms may 
suffer from overfitting, so to ensure that throughout the training process 
there is no overfitting, we used the Dropout operator between the dense 
layers. Considering that the value of Q-coefficient is always zero or a 
positive number, we used the relu activation function to prevent negative 
numbers from entering the training process (Fig. 8). 
	

	

	

	

	

	

	

	

	

	

Fig. 8. Relu function. 

  
 Our next step is choosing an index to monitor and measure the 
algorithm's accuracy. The mean square error (MSE) index makes sense 
based on the nature of the data (series). A point-by-point examination of this 
index can provide an overview of the difference between result algorithm 
that estimates and real data. There is no doubt that the higher the MSE 
index, the better the accuracy of the algorithm and the better the learning 
process. 
 
 It is well known that the log data are point data separated by 0.1524 
meters, so in reality, we have a huge set of points separated by a small 
distance. In the previous section, we mentioned that the CUDNNLSTM 
algorithm was used to check the series. We used a time generator to convert 
point data to series data. This generator does not produce time series, but 
converts our data (logs) into a series structure and then gives the resulting 
data to the CUDNNLSTM algorithm. Basically, this generator adjusts the 
scale of the data first and then feeds it in batches to the algorithm. Because 
of the large volume of calculations, we don't enter the whole series directly 
into the CUDNNLSTM algorithm, but instead, send it in categories with a 
series structure (Fig. 9). 
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Fig. 9. Time generator.  

 
RESULT  
 
 To train the algorithm, we used four different logs (Fig. 10), as 
mentioned in the previous part: 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

	

	

Fig. 10. Logs used: A) reflection coefficient Density. B) primary wave speed. C) RHOB. 
D) DT. 
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 As it is customary in machine learning, the entire data set is not 
always used for training; in this case, we had 12694 points, of which we 
separated 30% of point for testing and validating, or 3809 points. Following 
the separation of the datasets, the training and target input data are given to 
the algorithm that was described in the last section. The algorithm was 
trained for 740 rounds and the accuracy was 98.5% (Fig. 11) and the 
validation loss was 1.3% (Fig. 12). As mentioned earlier, the above items 
were calculated using the MSE technique. One of the ways to measure the 
distance between real data and predicted data by an algorithm is to use the 
Validation loss (VaL_loss) index. In this article, we used it to monitor the 
changes and improve the performance of the estimator algorithm 
(CUDNNLSTM). 
	

	

	

	

	

	

	

	

	

	

Fig. 11. Accuracy per epoch. 

	

	

	

	

	

	

	

	

 

 

Fig. 12. Validation loss per epoch. 
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 The purpose of this step is to compare the estimated data with the 
actual data to ensure the algorithm's performance is as accurate as possible 
(Fig. 13). A key point that needs to be clarified is that, using this trained 
algorithm, we are able to obtain the Q-value in other wells if there are logs 
as mentioned earlier. After testing the algorithm, the mean square error 
(MSE) value obtained was equal to 5.019, which is an excellent number and 
shows the accurate performance of the algorithm. 
	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

Fig. 13. Data comparison between actual and estimated data and error between real data 
and estimated data. 
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CONCLUSION 
 
 The results of this research show that the CUDNNLSTM is one of the 
most robust algorithms for the estimation of the Q-factor in oil fields 
because the difference between data in unseen well and data estimated by 
CUDNNLSTM is too low. In addition, because of the logical gate that was 
mentioned, outlier data can’t participate in estimation processes so we had 
auto-clear data for outliers during of estimating process. The accuracy that 
we achieved (98.5%) and validation loss (1.3%) shows that this algorithm 
has a high potential for use in the oil fields that lack VSP data, in other 
words, we can say the result is a such close to reality and it isn't specific to 
this data that we use it. The novelties of this research are using a deep 
learning algorithm instead of the spectral ratio Q-estimation method which 
has high error and uncertainty, another novelty of this paper is the scale of 
study. In last methods, Q-factor just estimated in each geological layers, this 
issue had a lots of side effect such as too much uncertainty because, the 
geological layers have heterogeneity and there are not pure but, in this essay, 
we estimated the Q-factor in scale of well logging tools (0.1524 m) so we 
can track any anomaly that effective on value of seismic attenuation. 
 
 In conclusion, we change the estimating approach to use a deep 
learning algorithm in this article led us to create a new perspective on the Q-
factor estimation process, which has several advantages, including accuracy 
and calculation time. 
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