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ABSTRACT 

 
Khatami, H.R., Riahi, M.A. and Abedi, M.M., 2023. Application of sparse dictionary 
learning to seismic data reconstruction. Journal of Seismic Exploration, 32:185-204. 
 
 According to the principle of compressed sensing (CS), under-sampled seismic 
data can be interpolated when the data becomes sparse in a transform domain.  To 
sparsify the data, dictionary learning presents a data-driven approach trained to be 
optimized for each target dataset. This study presents an interpolation method for seismic 
data in which dictionary learning is employed to improve the sparsity of data 
representation using improved Kth Singular Value Decomposition (K-SVD). In this way, 
the transformation will be highly compatible with the input data, and the data in the 
converted domain will be sparse. In addition, the sampling matrix is produced with the 
restricted isometry property (RIP). To reduce the sensitivity of the minimizer term to the 
outliers, we use the smooth L1 minimizer as a regularization term in the regularized 
orthogonal matching pursuit (ROMP).  We apply the proposed method to both synthetic 
and real seismic data. The results show that it can successfully reconstruct seismic data. 
 
KEY WORDS: compressed sensing, dictionary learning, optimization, reconstruction, 
    sparsity. 
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INTRODUCTION 
 
 Conventional digital data acquisition systems are based on the 
Shannon-Nyquist sampling theorem, which states that the characteristics of a 
band-limited analog signal can be determined exactly from a sequence of 
samples taken at a rate twice the signal’s frequency bandwidth (Herrmann et 
al., 2011). This fundamental result enables lossless data processing of 
signals. This fundamental result enables lossless data processing of signals. 
However, the Shannon-Nyquist theorem dictates an excessively high 
sampling (Baraniuk and Steeghs, 2017). When the signal of interest has 
some structure, such as when the signal allows a representation in the 
transform domain with few significant and many zero or insignificant 
coefficients, compressed sensing (CS) demonstrates that periodic sampling 
at Nyquist rates is far from optimal (Herrmann et al., 2011). 
 
 CS is the use of a few linear measurements to extract information 
from sparse data. While other researchers, to compress the data, modified 
the conventional approach of signal processing, in which a whole signal is 
generated and subsequently compressed (Donoho et al., 2005). However, It 
requires significant effort to reliably capture very large signals to compress 
them by eliminating the information. 
  
 Discrete cosine transform (DCT), Fourier transform, wavelet 
transform, and Curvelet transform are some examples of conventional 
methods. These transformation methods face some issues to represent data in 
a sparse form. For instance, DCT and Fourier transform is not well 
presenters of local characteristics of seismic data and Curve let transform 
cannot be selected based on the characteristics of seismic data. In contrast, 
the CS method mitigates these pitfalls appropriately. Recent works on CS 
combine the two processes in such a way that we can immediately perceive 
the signal or its fundamental components with a few linear measurements is 
an efficient method. There are numerous techniques for reconstructing 
sparse signals using CS, primarily based on two approaches: The first 
method, Basis Pursuit (BP) is based on optimization and is linearly solvable. 
The second strategy consists of greedy algorithms. A greedy algorithm is a 
simple, intuitive algorithm that is used in optimization problems. The 
algorithm makes the optimal choice at each step as it attempts to find the 
overall optimal way to solve the entire problem. Greedy. The main greedy 
methods are orthogonal matching pursuit (OMP) (Mallat and Zhang, 1993; 
Tropp and Gilbert, 2007), stage-wise orthogonal matching pursuit (StOMP) 
(Donoho et al., 2005), regularized orthogonal matching pursuit (ROMP) 



	

	
	
	

	

	

187 

(Needell and Vershynin, 2010), and compact sampling matching pursuit 
(CoSaMP) (Needell and Tropp, 2009). According to the theoretical results 
and actual examples presented in the preceding sources, the computational 
speed of the greedy technique is its primary advantage. Several hybrid 
algorithms attempt to utilize the favorable aspects of both the basic pursuit 
and greedy approaches (Gilbert et al., 2005; Iwen, 2007). These hybrid 
approaches improve execution speed but put strict constraints on the 
measurement matrix. 
 
 The majority of real-world data are not sparse and must be 
mathematically changed to new domains before becoming sparse. Using 
dictionary learning, rather than conventional transformations such as 
Fourier, wavelet, radon, and Gabor, one might design a specialized domain 
to improve sparsity. Dictionary learning identifies data patterns and has 
applications in image processing, image classification, denoising, and audio 
processing, face recognition, signal classification, data categorization, and 
image analysis (Moura et al., 2017; Meng et al., 2017; Oguz et al., 2016). 
Numerous studies have also been carried out recently in the seismic 
community at DL (Yu et al., 2015; Chen et al., 2016; Zhou et al., 2016; 
Chen, 2017; Nazari Siahsar et al., 2017a, 2017b; Zu et al., 2018; Wang et al., 
2021). These methods focus mainly on solving the problems encountered in 
deblending, interpolation, and denoising of 2D/3D seismic data. The 
algorithm DL was first proposed by (Elad and Aharon, 2006) and has 
reached the state-of-art in denoising gray images. A dictionary typically 
represents the fundamental structures of the images and is learned in small 
areas (She et al., 2019). 
 
 Seismic data are mostly under-sampled in the spatial dimension. This 
affects seismic processing results so that they are demanded to be 
interpolated. Some researchers have interpolated seismic data depending on 
its sparseness in several transformation domains (Herrmann and Hennenfent, 
2008). By assuming a transformed sparse wavefield, their solution contains a 
convergent function with smooth L1 constraints. This study uses CS and 
dictionary learning to interpolate missing seismic data. We investigate 
creating suitable sampling operators, the aliasing problem, the seismic data 
reconstruction, and improving the results using fewer data points. First, the 
concept of sparsity is explained and interpolation of seismic data in the 
sparse domain is discussed. In the end, constraints and methods for 
dictionary learning and transforming the data to the sparse domain are 
studied. Governing the idea of (Sun et al., 2019) we use ROMP to accelerate 
the calculations of dictionary learning while enhancing it. As known, smooth 
L1 regularization is used for doing box regression on some object detection 
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systems and is less sensitive to outliers while conventional L1 regularization 
is sensitive to outliers. The smooth L1 tries to mimic the L1 optimizer while 
being smooth. The smoothness property allows for treatment as smooth 
continuous regularization, which is in general easier than a non-smooth 
optimizer. Smooth L1 regularization can be interpreted as a combination of 
L1 regularization and L2 regularization. It behaves like L1 regularization 
when the absolute value of the argument is high, and it behaves like L2 
regularization when the absolute value of the argument is close to zero. The 
equation is: 
  
 L1; smooth={|x|   if |x|>α; 

           
1
|α|

𝑥!                if x ≤ α. 

 
 Therefore, as a regularization term of ROMP, the smooth L1 
regularization instead of the L1 regularization is used. By using smooth L1 
regularization our approach differs from Sun et al. (2019). The ROMP 
method using smooth L1 regularization was successfully applied to common 
seismic reflection data and the results and some suggestions for future works 
are presented. 
  
 Seismic data regularization is a popular ongoing research field. In 
addition to the mentioned methods, there are also other numerous methods 
such as neural networks or machine learning (Kaur et al. 2019) which each 
uses an underlying mathematical property of the data. In this paper, we focus 
on the sparsity of the data in one domain. The fact that the proposed 
algorithm learns the sparse domain from its input data makes it more 
promising than other transformations such as the Fourier transform. 
 
 
THEORY 
 
 Consider x as complete noiseless seismic data and y as incomplete 
and noisy data. Interpolation could be defined as applying a mathematical 
operator as follows: 
 
           𝑦 = 𝜙𝑥         ,                                                                                   (1)   
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where 𝜙 is a linear operator which maps a higher dimensional vector of  
𝐱 ∈ ℝ! to a lower dimension vector of 𝐲 ∈ ℝ!. In our case, y is the 
incomplete seismic data, while x represents the complete seismic data. 
Obtaining a higher-dimensional signal from a lower-dimensional signal has 
infinite solutions, in other words, eq. (1) is an under-determined ill-
conditioned problem. 
 
 
Sparsity and inverse problem 
 
 Eq. (1) is under-determined and has infinite solutions. By adding 
some constrain, we can decrease the number of solutions. A popular 
approach is that we suppose that the signal is sparse. Although the vast 
majority of signals are not sparse, most of their components are small 
enough to be neglected. Few linear measurements are used to rebuild sparse 
signals using sparse reconstruction techniques (Lan et al., 2022). A 
measured sample of signal x is the inner product of x ∈ ℝ! and a vector-like 
𝜙! ∈ ℝ!. The combination of m signal measurements is equivalent to 
multiplying the sampling matrix 𝜙 by dimensions of m×n whose columns 
are 𝜙! to the signal. The sparse reconstruction is to recover a k-sparse signal 
x from a sampled vector 𝑦 = 𝜙𝑥. Even though the number of existing 
samples is less than the number of samples in the model, a unique solution 
can be extracted using an under-determined inverse problem and sparsity 
constraint. 
 

min𝐱∈ℝ! ∥ 𝐱 ∥!     subjects to ∥ 𝐲 − 𝜙𝑥 ∥!< 𝜀      .                            (2)  
   

 
 If x is k-sparse (it is a linear combination of only K basis vectors), 
accordingly y is also k-sparse. Eq. (2) is a restricted inverse problem, which 
contains two terms: the first term is to adopt the data and the second term is 
to adopt the result with the L0 regularization. The L0 regularization is not 
convergent and has many local minimums (Boyd, 2004) and its 
minimization is difficult. Therefore, in practice a weaker approximation of 
this regularization (i.e., smooth L1 regularization) is used: 
 

min𝐱∈ℝ! ∥ 𝐱 ∥!     subject to ∥ 𝐲 − 𝜙𝐱 ∥!< 𝜀      .                              (3)        

 The smooth L1 regularization is convergent and it could be minimized 
by using linear programming and inner point methods. 
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Condition of sparse reconstruction 
 
 If the columns of the sampling matrices ϕ create an orthogonal 
system, the inverse problem has a unique solution. Geometrically, ϕ must 
contain a batch of unit vectors in Hilbert space in which their mutual angles 
are equal. Therefore, these vectors have the lowest correlation. This property 
is known as an equiangular tight frame (ETF) (Strohmer and Heath, 2003). 
While using over-complete dictionaries in CS, ETF is valuable (Candès et 
al., 2008). They showed that the measurement matrix ∅ must satisfy the RIP 
(Restricted Isometry Property) (Candès et al., 2006); 
 

1 − 𝛿!! ∥ 𝐱 ∥!!≤∥ 𝜙𝐱 ∥!!≤ 1 − 𝛿!! ∥ 𝐱 ∥!! ,      (4) 
𝛿!! ∈ (0,1)  

where δ2k is the smallest δ in the equation for which the above equation (4) 
is satisfied for 2k-sparse signals. If δ is much smaller than one, the above 
equation indicates that each k subset (or less) of the columns of ϕ is 
orthogonal and unitary. This property is called the restricted isometry 
property (RIP). Although eq. (4) is an important theoretical basis for the 
analysis of the thin constraint of the matrix ϕ, due to the complexity of RIP 
calculations, its study is not easy even for medium-sized matrices. Thus, 
apart from certain types of matrices, such as sub-Gaussian, quasi-Fourier 
(Candès et al., 2006), and some structured matrices (Duarte and Eldar, 
2011), it is difficult to check if the matrix follows RIP. Instead of RIP, 
(Candès et al., 2008) propose mutual coherence between the αi and αj 
coefficients (Candès et al., 2006), which is defined as follows: 
 
 

         𝜇 𝜙 = max!!!  
!!!⋅!!!
!! ! !! !

,         𝑖, 𝑗 = 1,2,3,… ,𝑁                              (5)  

 
 
where αi and αj represent the i-th and j-th column vectors of matrix ϕ. 
Mutual coherence µ(ϕ) measures the maximum similarity between columns 
of ϕ, and it has a major impact on the output of the compressed sensing 
algorithm. If this similarity is high, it affects the result of eq. (3) and µ(𝜙) 
must be small and near zero (Donoho, 2006). 
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CS AND SEISMIC DATA INTERPOLATION 
 
 In data reconstruction using intense measurement theory, two 
considerations must be made. First, according to eq. (3), must be presented 
seismic data in a sparse form, and second, according to eq. (5), the 
measurement matrix must meet the minimum mutual coherence condition. 
In this case, by applying a suitable algorithm, the data can be accurately 
interpolated. 
 
 
Sparse Representation of the Seismic Data 
 
 Consider a simple two-dimensional geological model in which some 
layers have different densities and velocities of seismic waves. Synthetic 
seismic data of this model is created by using a Ricker wavelet with the 
dominant frequency of 30 Hz, while forty percent of the traces are randomly 
deleted Fig. 1a. The spatial distances of the traces are 20 meters and time 
intervals are 4 milliseconds. Fig. 1b shows the Fourier transform of this 
section in the wave number-frequency domain, where due to random 
sampling, the frequency spectrum is disturbed so that a true reconstruction 
of the data with this spectrum is not possible. Using 𝜙 on each row of the 
complete section yields the samples of the incomplete section as shown in 
eq. (1). In the example of Fig. 1, the number of the original points (N) is 
equal to 50 while the number of the sampled points (M) is equal to 30. 
 
 To calculate the original data x from the incomplete data y, the 
number of unknowns is larger than the number of information; therefore, 
this equation is under-determined. Conventional solutions to such systems 
do not provide a unique answer. The objective here is to use CS theory for 
reconstruction, which requires a sparse condition to be satisfied. In the 
spatial-temporal domain, seismic data are not subject to this requirement. 
Due to the discrete and irregular sampling intervals (figure 1a), the Fourier 
spectrum of the mentioned data and its incomplete data is disturbed, and the 
data is not properly sparse. On the other hand, due to the folding of the 
primary events, aliasing has generated artifact events. Consider a sparse and 
discrete signal x, with N samples. This signal can be considered a linear 
combination of the orthogonal basis of Ψ. 

          Ψ! = Ψ!,Ψ!,Ψ!,⋯ ,Ψ!       ,                                                           (6)   

where ΨT is the transpose of Ψ. Since the basis is orthogonal, we rewrite x as 
follows: 
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          𝐱 = Ψ𝛼 = ∑!!!!  𝛼!Ψ!      ,                                                                   (7)  

where 𝛼! =< 𝐱,Ψ! > Ψ is called sparse coefficients collection of x, if only k 
number of coefficients are nonzero (k << N). In this case, x is k-sparse. If 
the transformation coefficients of seismic data under an orthogonal 
transformation like Fourier or Curvelet are zero or close to zero, seismic data 
is sparse in the transformation domain. 
 
 Based on CS theory, using a transformation operator (Ψ) we transform 
the incomplete data x to a domain where the transformation coefficients are 
sparse. Incomplete data x to a domain where the transformation coefficients 
are sparse. 
  

𝛼 = Ψ𝐱  
                              .                                                                                     (8) 

𝐱 = Ψ!𝛼  
 

 
The superscript H indicates the conjugate transpose. Combining eqs. (1) and 
(8) results in eq. (9): 

          𝐲 = 𝜙𝐱 = 𝜙Ψ!𝛼 = Θ𝛼      ,                                                             (9)    

where Θ is sensing matrices which must be singular so that we could find 
coefficient α from y. Eq. (9) is under-determined and it has no unique 
solution. Since the coefficient α must be sparse, we rewrite (9) to an 
optimizing problem (Donoho, 2006; Candès et al., 2006): 

 𝛼 = argmin! ∥ 𝛼 ∥!  𝑠 ⋅ 𝑡 ⋅  𝐲 = Θ𝛼     .                                         (10)  

 Using basic pursuit or greedy approaches and calculating 
transformation coefficients 𝛼 while keeping in mind the sparsity condition, 
one could estimate the seismic data: 

𝐱 = Ψ!𝛼      . (11) 
 
Dictionary Learning 
 
 When a matrix or vector is transformed into a sparse domain, the 
signal can be reconstructed using a variety of reconstruction procedures 
(Needell and Tropp, 2009; Lotfi and Vidyasagar, 2018). Unlike common 
dictionaries such as Fourier or Wavelet, building and learning a dictionary 
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that fits the input data enhances sparsity dramatically. Dictionary learning 
tries to use input data  𝐘 ∈ ℝ!×! and find a dictionary 𝐃 ∈ ℝ!×! and sparse 
representation (Zhou et al., 2016) of the input data 𝐗 ∈ ℝ!×! in a way that 
the difference between 𝐘 and 𝐃𝐗 is minimized. This is an optimizing 
problem as in eq. (12): 
 

min𝐃,𝐱! ∑!!!
!   𝐲! − 𝐃𝐱! !

! + 𝜆 𝐱! !  				,																																															(12)	

where 𝑌 = 𝑦!, 𝑦!,… , 𝑦! ∈ 𝑅!×! and 𝑋 = 𝑥!, 𝑥!,… , 𝑥! ∈ 𝑅!×! are 
training data and the sparse representation coefficient vector of training data, 
respectively. 𝐷 = 𝑑!,𝑑!,… ,𝑑! ∈ 𝑅!×! represents the dictionary. To 
prevent large numbers in the dictionary and small sparse vectors, the size of 
atoms is restricted to one ( 𝑑! ! ≤ 1). The parameter λ regularizes the ratio 
between sparsity and minimization error and must beset (λ > 0). Solving L0 
is an NP-hard problem and eq. (12) is not convergent (Sun et al., 2019). If 
we use L1 instead of L0 sparsity is guaranteed (Donoho, 2006), and assuming 
a known D or a known X, this equation converts to a convergent 
optimization problem. However; if both D and X are unknown, this equation 
is not convergent. In eq. (12) if m < n we say the dictionary is under-
complete, and if m > n dictionary is over-complete. In dictionary learning, it 
is assumed that the dictionary is over-complete. An over-complete 
dictionary that shows the sparse signal can be a usual transformation such 
that Fourier and wavelet or be defined and learned in a way that ideally 
transforms the existing signal to sparse form. Compared to predefined 
dictionaries, learned dictionaries create sparser representations. 
 
 The original data for this study is unavailable, thus we will reconstruct 
it by interpolating the missing traces. We solve the incompleteness of the 
data by filling the missing traces with their neighbor traces and calculating α 
coefficients. Rewriting eq. (12) for seismic data 𝑿, we have: 

           argmin𝐃,𝐱! ∑!!!
!   𝐱! − 𝐃𝛼! !

! + 𝜆 𝛼! !      ,                                 (13)  

𝑿 is the transposition of the filled seismic data. L is the number of samples 
in the time direction or the length of a seismic trace. Most of the algorithms 
which solve eq. (13) include two parts, dictionary learning and sparse 
estimation (sparse coding) which execute iteratively. Here, a method such 
as improved K-SVD can create the dictionary D (Shi et al., 2018). We 
utilized the ROMP, which is a method that has the advantages of BP and 
greedy methods. Since it finds several coefficients at each iteration, ROMP 
is also faster than OMP. 
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Interpolation of seismic data 
 
 Suppose that sampling matrix 𝜙 and sparse dictionary D are correct. 
In this case, it is necessary that at the sampling points ∥y− 𝜙 Dα∥2 < ε. 
Accordingly, we create sparse coefficients as follows: 
 

∀𝑖,𝛼! = argmin! ∥ y − 𝜙𝐷𝛼 ∥!   s.t. ∥ 𝛼 ∥!< 𝑇,    𝑖 = 1,2,3⋯ , 𝐿         (14)  

 
where T is the maximum number of non-zero elements in Dα. We use 
ROMP to solve eq. (14). While having sparse coefficients, sparse 
dictionaries, and sampling matrices, the original data can be reconstructed (x 
= 𝜙Dα). Algorithm 1 shows the interpolation of seismic data using ROMP. 
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Calculation of the Sampling Matrix 
 
 One of the two operators of Θ in eq. (9) is already calculated (ΨH = 
D). If we had the sampling matrix Θ, the mutual coherence of the columns 
of Θ must be minimum (Θ = 𝜙D). Here we use this property to find a proper 
sampling matrix. There are several methods to optimize the mutual 
coherence of a matrix. To generate the sampling matrices 𝜙, we use 
algorithm 2 (Sun et al., 2019): 
 
 
APPLICATION OF THE PROPOSED METHOD 
 
 We apply our proposed method to a synthetic seismogram. Fig. 1 
shows the seismic section after randomly deleting 40 percent of the traces 
with its 2D Fourier transom section. Using the proposed algorithm, the 
missing traces of Fig. 1 are interpolated. The result is shown in Fig. 2a. The 
existing data is reconstructed with high accuracy. The reconstructed missing 
traces are highly consistent with their neighboring traces, but there are some 
differences in the location of large gaps (Fig. 2b). 
 
 

a)                                                              b) 

 
Fig. 1. (a) Seismic section after randomly deleting 40 percent of the traces. (b) The f-k 
spectrum of (a).		
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a)                                                                       b) 

 
 
Fig. 2. Interpolation of Fig. 1a. (a) Interpolation using the proposed algorithm.  
(b) Difference between the original section and the reconstructed one. 
 
 
 
 25, 50, and 75 percent of the seismic traces of the studied section are 
deleted and the incomplete sections are interpolated. To fit with the CS 
theory, the sparsity is selected to be less than the existing seismic trace. The 
missing traces are reconstructed accurately because the input data is 
noiseless. For example, the difference between the original section and the 
reconstructed section in which 75 percent of seismic traces were deleted 
(Fig. 3a), is shown in Fig. 3b. Most of the interpolation errors have occurred 
at the location of the missing traces and large gaps. So far, the seismic 
section was noiseless which usually is not the case for seismic data. 
Therefore, a basic criterion for the efficiency of seismic processing methods 
is their ability to handle different noises. In different stages of the seismic 
processing workflow, several methods are used for the attenuation of 
random and coherent noise. 
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a)                                                               b) 

 

Fig. 3. (a) Seismic section after randomly deleting 75 percent of the traces. (b) Difference 
between the original section and the interpolated section. 

 
 Since the range of frequency content of the manmade seismic waves 
is known (Usually between 10 to 100 Hz and even less), filtering the noises 
using the Fourier transform is popular. 
 
 Different ratios of noise are added to the studied seismic section and 
the proposed algorithm is applied to them. Fig. 4a shows this seismic section 
after adding random noise, in which its signal-to-noise ratio (SNR) is 
reduced to 10 dB, and randomly 40 percent of the seismic traces are deleted. 
Following our algorithm, to start the dictionary learning, the missing traces 
are filled with their neighboring traces. Since for the filled traces the location 
of seismic events could differ from the real locations, replacing seismic 
traces would add coherent noise and this is the reason the SNR of the filled 
section is much lower than the actual data (3.41 dB as presented in Table 1). 
Algorithm 3 is applied to the incomplete section and the interpolation is 
performed (Fig. 4b). SNR of the reconstructed section is 8.2 dB which is 
much higher than the filled section (Table 1). Although this ratio is less than 
the ratio of the real data, practically the real seismic section is not available. 
Therefore, it could be said that interpolation increased the SNR of the 
existing data. The difference between the real section and the interpolated 
section shows that the errors are spread over the whole section. In the case of 
having coherent noise, these events could not be differentiated from seismic 
traces unless we apply some assumptions and conditions to the results. 
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Fig. 4.  Reconstruction of a synthetic seismic section. 40 percent of the traces are deleted. 
a, d, and g: the incomplete sections with SNR 10dB, 1 dB, and -10 dB respectively. b, e, 
and h: the interpolated sections related to a, d, and g, respectively.  Figures c, f, and i: are 
the F-K spectrum of the b, e, and h, respectively. 
 
 
 According to the Shannon-Nyquist theory, a complete reconstruction 
requires a signal that has at least twice the maximum sampling frequency in 
the data. This theory assumes that the signal has a complete range of 
frequencies. Based on CS, the existing frequencies of the signal are sparse 
and the signal contains few frequencies. With this assumption, the theory of 
Shannon-Nyquist does not preclude signal reconstruction and aliasing will 
not occur. Although the f-k spectrums of the sections in Fig. 4 show the 
aliased event in the f-k spectrum, aliasing did not occur in the interpolated 
results. 
 

a)	 b)	 c)	

d)	 e)	 f)	

g)	 h)	 i)	
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 The above procedure is repeated for incomplete sections with 
different SNR ratios while 40 percent of the traces are randomly deleted. 
Figs. 4e and 4h show the interpolation results of the incomplete sections 
with SNR of 1 dB and -5 dB respectively. Same as in Fig. 4b, the missing 
traces are reconstructed and compared to the filled sections and SNRs are 
increased (Table 1). Although the proposed method reconstructed the 
missing trace of low SNR sections, its ability reduces when noises are larger. 
Therefore, in this situation, it is necessary to de-noise the incomplete 
sections before the interpolation. 
 
 
Table 1. SNR of the synthetic seismic sections in Fig. 4. The ratios are in dB. 

 
Signal to Noise Ratio SNR 

Original Sections Filled Sections Interpolated Sections 
10 3.41 8.2 
1 -0.58 0.8 
-5 -5.41 -4.7 

 
 
 We test our method on real seismic data with more complicated 
structures. A shot-gather with 650 traces is selected. Each trace is sampled in 
5 seconds with a time interval of 4 ms. Noisy traces and zero traces do not 
exist in this record. Some random noise, coherent noise, and ground roll 
exist in this shot gather. A 10 to 80 Hz band-pass filter was already applied 
to the data. 50 percent of the trace are randomly removed (Fig. 5a). To have 
a clear plot, every 10 consecutive traces are omitted in the plotting. Empty 
trace locations are spread randomly in the entire offset and there are large 
gaps in the incomplete data. Fig. 5b shows the interpolation result of the 
incomplete shot-gather. Since the original data was filtered and has a 
relatively high SNR, the original traces are replaced in the interpolated 
section in the location of available traces in the incomplete data. The 
reconstructed seismic events are highly compatible with their neighbor traces 
In the location of missing traces and large gaps. The frequency spectrum of 
the interpolated section in Fig. 5c shows that some high-frequency noises are 
added to the data. The missing traces are reconstructed acceptably. As in the 
circled example areas in Fig. 5b, most of the errors and seismic artifacts are 
related to steep seismic events and large gaps. 
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(a) 
 

     (b) (c) 

 
 
Fig. 5. (a) The shot-gather after randomly deleting 50 percent of the traces.  
(b) Interpolated shot-gather. (c) The frequency spectrum of b. 
 
 
 
 Fig. 6a shows an Inline of the 3D F3 block seismic data. 50 percent of 
this data is removed (Fig. 6b).  The proposed algorithm is used to interpolate 
the missing data. As in the result in Fig. 6c, and the error section in Fig. 6d 
the interpolation introduces some low-amplitude random noises in the data. 
However, the seismic events are reconstructed. To compare the results to 
another sparsity-based interpolation algorithm, the missing data is also 
interpolated using a Fourier-based interpolation method which is discussed 
in Jahanjooy et al. (2016) (Figs. 6e, and 6f). Although the result is 
promising, the Fourier interpolation creates more errors in regions with steep 
events.  
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(a) (b) 

  

(c) (d) 

  

(e) (f ) 

Fig. 6.  (a) Shows an Inline of the 3D F3 block seismic data. 50 percent of this data is 
removed (b) The proposed algorithm is used to interpolate the missing data. As in the 
result in (c), and the error section in (d) the interpolation introduces some low-amplitude 
random noises in the data. However, the seismic events are reconstructed. To compare 
the results to another sparsity-based interpolation algorithm, the missing data is also 
interpolated using a Fourier-based interpolation method which is discussed in Jahanjooy 
et al. 2016 (e) and (f). 
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CONCLUSIONS 
 
 The data must have a sparse representation to use CS, which original 
seismic data do not have. The improved K-SVD is used to solve the problem 
as well as to generate the over-complete transformation matrix based on the 
efficacy of dictionary learning techniques. This dictionary generates a sparse 
data depiction of the seismic data in line with CS. It is optimized so that 
sampling matrices have little mutual coherence with the dictionary. A sparse 
data depiction is generated in the sparse domain using a smooth L1 
minimizer term as a minimizer term of the matching pursuit method such as 
ROMP. The entire data is rebuilt using the sparse data representation and the 
over-complete dictionary as transform matrices. After applying it to different 
types of seismic data, we find that the suggested approach can interpolate 
seismic data with a high proportion of missing traces and low SNR. This 
accuracy declines in the case of complex and dense seismic events. In the 
transformation domain, seismic data is sparse with only a few non-zero 
coefficients and the aliasing does not occur in the reconstruction. The 
accuracy and speed of the improved K-SVD of seismic data could be 
improved by researching the impact of dictionary redundancy. In this 
research, the proposed method is applied to 2D seismic data. Studying the 
efficiency of this method on 3D data is considered for future research. 
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