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ABSTRACT 
 
Zhang, Y., Singh, S., Thanoon, D., Devarakota, P., Jin, L. and Tsvankin, I., 2023. 
Physics-guided unsupervised deep-learning seismic inversion with uncertainty quantification. 
Journal of Seismic Exploration, 32: 257-270.  
 
 Data-driven seismic inversion techniques are often used for estimation of 
subsurface properties. Employing the acoustic or elastic wave equation, inversion starts 
with approximate initial values of subsurface parameters, which are typically updated in 
iterative fashion. Here, we propose a two-stage unsupervised machine-learning (ML) 
methodology for efficient and accurate seismic impedance inversion. The first stage 
utilizes the generalization capability of convolutional neural networks (CNN) to produce 
realistic estimates of the acoustic impedance (AI), whereas the second stage incorporates 
physics information to generate synthetic data from the subsurface AI distribution. We 
also add Bayesian layers to the first stage of the network to evaluate the model errors. 
The proposed probabilistic approach to deep learning allows one to estimate the 
uncertainty of the inverted parameters, which enhances the interpretability of the model. 
We apply the algorithm to a poststack data set generated using the CGG Hampson-
Russell software. After conducting network training with a sufficient number of data 
points, the network is applied to the rest of the data to estimate the model parameters. The 
developed approach has a significant advantage over more conventional ML strategies 
because it produces statistically justified uncertainty maps and eliminates the need to use 
labeled data for training. 
 
KEY WORDS: seismic inversion, physics guided machine learning, 
    unsupervised learning, uncertainty quantification, model evaluation. 
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INTRODUCTION 
 
 Seismic inversion has been widely used to estimate the elastic 
properties of the subsurface and generate high-resolution reservoir 
models (e.g., Sen, 2006; Singh et al., 2021). For example, elastic 
parameters or reservoir properties can be obtained by deterministic or 
stochastic inversion of the amplitude-variation-with-offset (AVO) 
response (e.g., Russell, 1988; Sen and Stoffa, 2013). Deterministic 
algorithms, which use the gradients of the objective function to update 
the model parameters, are computationally efficient but often get trapped 
in local minima of the objective function depending on the accuracy of 
the initial model and inversion nonlinearity. Regularization terms are 
often added to improve the convergence of parameter updating. 
However, regularization may not be effective if the initial model is 
inaccurate, and the regularized objective function has to operate with 
smoothed input data (Tikhonov and Arsenin, 1977; Loris et al., 2010; 
Guitton, 2011; Sen and Biswas, 2014). Stochastic algorithms typically 
use a Bayesian framework and random sample the model space to 
minimize the objective function. This approach may help avoid local 
minima during parameter updating (e.g., Sen and Biswas, 2017). 
 

 Recent progress in computational resources (including the advent of 
graphic processing units or GPUs) has made it feasible to use deep-
learning (DL) algorithms for seismic interpretation (Guitton, 2018; Shi et 
al., 2019; Singh et al., 2022). In particular, DL networks can provide 
highly efficient segmentation and regression results because they are 
capable of extracting essential features from large-scale data sets in high-
dimensional spaces (Ronneberger et al., 2015). DL algorithms have also 
been successfully applied to other geophysical problems including 
classification of salt bodies and fault picking (e.g., Di et al., 2018; Wu et 
al., 2018). 

 
 However, current deep-learning applications, such as those based 

on CNNs (convolutional neural networks), are mostly limited to 
classification problems rather than inversion for subsurface properties. 
Das et al. (2018) applied CNNs to a supervised regression problem of 
estimating acoustic impedance from seismic data. Their inversion 
algorithm is based on convolutional operators because seismic reflection 
data can be represented as the result of convolving the source wavelet 
with the reflectivity series. Here, we assume the same model but solve 
the regression problem using a modified network trained in unsupervised 
fashion. Forward simulation is employed to generate the data for the 
predicted model and compare them to the observed data. The error of 
the predicted data then allows us to update the CNN weights (Biswas et 
al., 2019). This machine-learning algorithm referred to as DLI (deep-
learning inversion). 
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 Most convolutional networks produce pointwise estimates of their 
weights, but that information does not fully capture the uncertainty in 
the values of the weights. In our architecture, the encoder half of the 
network is supplemented with Bayesian layers to evaluate the 
uncertainties in the weights’ space. The decoder half uses a physics-based 
approach to produce estimates of poststack data; we call this approach 
“Bayesian DLI.” Then we introduce “Dropout DLI,” which evaluates 
the uncertainty in the weights by employing dropout layers in the 
encoder part of the network. Finally, we compare the uncertainty 
quantification results of the two proposed algorithms. 

 
 
UNSUPERVISED TRAINING MODEL 
 
 Unsupervised ML is designed to learn distinct distributions from 
the input data. Fig. 1 shows our proposed CNN architecture, whose main 
components are described below. 
 
 

 
Encoder model: Stage 1 

 
 The input is a 1D tensor or vector of a fixed time length (NT), which 
represents a stacked seismic trace. The output is the 1D acoustic 
impedance (AI) of the same size (NT). The CNN consists of a feed-
forward stack of two convolutional layers (Conv1 and Conv2). The size of 
the first layer (Conv1) is (time length of the wavelet × 1), with 60 filters or 
output channels and a stride of one. The filter dimension in time is the 
length of the wavelet, which is sufficient for capturing enough features or 
spatial dependencies in the region where that filter operates. Because this is 
a trace-by-trace operation, the second dimension is unity. The “stride” 
represents the number of rows/columns in the filter shifts over the input 
matrix while applying the convolution operation, and “1” in the second 
dimension implies no shifting. 
 

 The second convolutional layer (Conv2) has the same size as the first 
one, but only a single output channel with a stride of one. We conduct 
hyperparameter tuning to determine the filter size (i.e., 60) in the first 
convolutional layer. The second layer employs a filter of unit size, which 
yields a single time-series output. Setting the stride to one maintains the 
output dimension equal to that of the input. This network produces a time 
series, which is treated as our desired output (AI). After each convolutional 
layer, activation is performed by employing a nonlinear rectified linear-unit 
(ReLU) function. 
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Fig. 1. Outline of the proposed CNN architecture for physics-based inversion. The 
acoustic impedance is estimated from stacked seismic gathers, and the obtained impedance 
model is used to generate seismic data by convolving the wavelet with the reflectivity 
series. Then the simulated data are compared with the observed data set. 
 
 
 
Decoder model: Stage 2 
 
 Because our objective is to estimate the AI from stacked seismic traces, 
a forward-modeling operator is included in the decoder. We extend the 
encoder architecture, use the output model generated by the encoder, add a 
low-frequency component of the acoustic impedance (assumed to be known), 
and simulate seismic data using the forward-modeling operator. Finally, we 
compare the modeled and recorded seismic data to calculate the data misfit. 
Fig. 1 shows the modified network designed for poststack impedance 
inversion. We add a low-frequency model to the encoder network output, 
calculate the reflectivity series r (t), and convolve it with the wavelet w(t) to 
generate the poststack seismic trace dcal: 
 

∆AI 
r (t) =       ,                                          (1) 

AI 
 

dcal = r (t)  *  w (t)     ,                                  (2) 
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where 𝐴𝐼= (ρ1VP 1 + ρ2VP 2)/2 is the mean acoustic impedance for two 
consecutive layers and ∆AI is the difference between those impedances. The 
mean-square difference between the observed data dobs and simulated data 
dcal is: 
 

            𝐸 = !cal!!obs !

!"
!"
!!!          .                   (3) 

 
 We also add to eq. (3) a regularization term, λ||AIPred − AIInitial||, to 

constrain the predicted AI model; λ is a tunable parameter. 
 
 
Bayesian inference 

 
 Probabilistic approach to deep learning allows one to enhance the 
interpretability of the model by estimating the uncertainty in the output 
(Singh et al., 2022). Each Bayesian convolutional layer is initialized with the 
standard normal prior P (w) = N (0, 1) (the vector w represents the network 
weights) and employs a flipout estimator (Wen et al., 2018) to 
approximate the posterior distribution during forward passes. The flipout 
estimator provides the Monte Carlo approximation of the posterior 
distribution by integrating over the Bayesian layer’s kernel and bias and 
significantly lowering the network variance (Wen et al., 2018). We employ 
the variational free-energy loss function F to approximate the posterior 
distribution over the network’s weights: 
 

                                     (4)       
 
where M is the total number of training examples, i is the minibatch, and 
q(w|θ) represents the variational inference (θ is a variational parameter). The 
first and second terms on the right-hand side of eq. (4) are the so-called KL 
(Kullback-Leibler) divergence and crossentropy (Di represents labels), 
respectively. The first term is divided by M to optimize the minibatch I ∈  
{1,2,...M}, as proposed by Graves (2011). This helps distribute the KL 
divergence penalty evenly over the minibatches. Eq. (4) can be interpreted as a 
tradeoff between fitting the data (the crossentropy term) and satisfying the 
simplicity prior (the KL term). 
 

 To stabilize the network, we employ the Adam optimizer (Bowman et 
al., 2016). Bayesian layers are included only in the encoder half of the 
network to maximize the information transfer between the input and the 
latent space (LaBonte et al., 2020). 
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VALIDATION OF DECODER MODEL (FORWARD MODEL) 
 
 To validate the self-developed decoder model (forward-modeling 
operator), we compare it with a widely used geophysics software RokDoc 
(by Ikon Science). We pick a trace of synthetic acoustic impedance from 
RokDoc, use it as an input to our self-developed decoder model to generate a 
trace of synthetic seismic data, and compare that trace with the seismic 
calculated by RokDoc (Fig. 2). 
 
 

 
 

Fig. 2. Validation of the decoder model with RokDoc: Workflow. 
 
 

 As shown in Fig. 3, the synthetic seismic generated by our self-
developed (forward) decoder model matches very well with the output of 
Rokdoc. (The convention of convolu in Tensorflow (Abadi et al., 2016) is 
different from that in RokDoc, so a factor of –1 needs to be applied to make 
the comparison.) 
 
 
NUMERICAL EXAMPLES 
 

Three-layer model 
 
 We first test our workflow on a synthetic layer-cake model composed of 
three homogeneous layers. The actual acoustic impedance of this model is 
shown in Fig. 4, and this synthetic impedance is used to generate seismic 
data. The initial acoustic impedance model is similar to the actual model, but 
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with a smaller AI amplitude in the second layer. The generated seismic and 
the initial AI model represent two inputs to our proposed unsupervised 
physics-guided deep-learning algorithm. The obtained prediction of the 
acoustic impedance is displayed in Fig. 5. The predicted seismic data 
accurately matches the actual seismic data, while the predicted acoustic 
impedance is close to the initial acoustic impedance model, although it can 
add fluctuations to the initial model. 
 

 
Fig. 3. Validation of the decoder model with RokDoc: Result. 
 

 
Fig. 4. Synthetic three-layer AI model. 
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Fig. 5. Performance of the developed DLI algorithm on the model from Fig. 4. 
 
 
 

 This demonstrates the nonuniqueness of the inverted impedance and 
the importance of the accurate initial model. Although this test confirms that 
our DLI algorithm has the ability to predict the high-frequency component 
of acoustic impedance, it still requires a reasonably accurate initial model for 
predicting the low-frequency AI component. 

 
 
 

CGG Hampson-Russell model 
 
 To demonstrate the network’s performance, we use poststack seismic 
data generated by the Hampson-Russell CGG software (Fig. 6a). This is a 
relatively small 3D data set, which includes the actual acoustic model and the 
source wavelet. We randomly select 80% of the traces for training, whereas 
the remaining data are set aside for network testing purposes. Based on the 
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training history, we stop training at approximately 200 epochs to minimize 
possible overfitting. The batch size is set to 16 traces, with batch shuffling at 
the end of each epoch. The input includes stacked seismic gathers and the 
low-frequency acoustic impedance model constructed by smoothing the actual 
model. We utilize a dynamic learning-rate methodology that has a starting 
value of 0.001. 
 
 

 
 
Fig. 6. (a) Inline #50 of the Hampson-Russell data set. (b) The mean poststack seismic 
data estimated by DLI. 
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 To validate the network after training, we display the mean of both the 
poststack data and the acoustic impedance obtained from the testing data set. 
Figs. 6-8 illustrate the accuracy of the seismic data and of the impedance 
generated by the proposed networks. The parameters estimated by both 
networks are close to the actual values, with an R2 score of 0.73. 
 
 

 
 
Fig. 7. (a) Comparison of the actual (black) and predicted (yellow) seismic traces for one 
of the CDPs. (b) Comparison of the actual (black), initial (blue), and predicted 
(yellow) acoustic impedance (AI) at the same CDP location 

 
 
 To obtain the posterior distribution for each grid point, 100 Monte 
Carlo samples are computed from both the Bayesian DLI and the 
Dropout DLI (the dropout probability is set to 0.2). We define the 
confidence intervals for the inverted AI as the 30th and 70th percentiles of 
the softmax values and the uncertainty as the difference between these 
percentile values (Fig. 9). It is clear that the Bayesian DLI has a lower 
standard deviation and provides a better uncertainty quantification 
compared with the Dropout DLI. 
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Fig. 8. (a) Actual, (b) initial, and (c) inverted AI models for inline #50. 

 

 
 
Fig. 9. Uncertainty maps of the posterior prediction of the acoustic impedance 
corresponding to the confidence interval between 30-70%: (a) Bayesian DLI; (b) 
Dropout DLI. 
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ANALYSIS OF SENSITIVITY TO INITIAL MODEL 
 
 Because one of the most important inputs to our algorithm is the 
initial model of the inverted properties (i.e., the acoustic impedance), it is 
essential to test the influence of the initial AI distribution on the inversion 
results. 
 
 The impedances predicted using homogeneous (Fig. 10a) and Hampson-
Russell’s (Fig. 10b) initial models look generally similar. However, the AI 
obtained with the Hampson-Russell model (which is more accurate) has a 
higher vertical resolution and better separation between layers. 

 
 

 
 
Fig. 10. Acoustic impedance predicted using (a) a homogeneous (constant AI) initial 
model and (b) the Hampson-Russell initial model. 
 
 
CONCLUSIONS 
 
 We presented an application of Convolutional Neural Networks 
(CNNs) to the practically important problem of seismic impedance inversion. 
We made two significant modifications in the CNNs by estimating the 
geophysical parameters instead of employing classification and by making 
the network training unsupervised via incorporating physics information. 
  
      The results show that physics-based methods applied to poststack 
seismic inversion can predict the spatial distribution of the acoustic 
impedance with acceptable accuracy. The unsupervised physics-based 
network eliminates the need to have a known response (i.e., the actual label 
parameters) for the training, which is often difficult to obtain for field data. 
By estimating the uncertainty in the weight space, the employed Bayesian 
scheme provides interpretable quantification of the inversion errors. The 
method was successfully applied to realistic synthetic data, which confirms 
the high potential of deep-learning techniques in seismic inversion and 
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quantitative interpretation. We conclude that deep learning provides a robust 
framework for combining seismic data and low-frequency information about 
elastic properties in automated estimation of attributes for reservoir 
characterization. The developed strategy is currently being tested on a field 
data set from the Gulf of Mexico. 
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