JOURNAL OF SEISMIC EXPLORATION 32, 301-314 (2023) 301

SEISMIC DATA RECONSTRUCTION COMBINING
DISCRETE COSINE TRANSFORM AND SHEARLET
TRANSFORM

HAIYANG YAN' 234 HUI ZHOU' 23 HAIBO LIUY, ZHAOHONG Xu?,
ZANDONG SUN*, ZHAO LIU* and MINGKUN ZHANG 2

! State Key Laboratory of Petroleum Resources and Prospecting, Beijing 100029,
P.R. China. huizhou@cup.edu.cn

CNPC Key Lab of Geophysical Exploration, Beijing, 100029, P.R. China.

* China University of Petroleum-Beijing, Beijing 102249, P.R. China.
* BGP Offshore, CNPC, Tianjin 300457, P.R. China.

(Received February 1, 2023; accepted May 6, 2023)

ABSTRACT

Yan, H.Y., Zhou, H., Liu, H.B., Xu, Z.H., Sun, Z.D., Liu, Z. and Zhang, M.K., 2023.
Seismic data reconstruction combining discrete cosine transform and shearlet transform.
Journal of Seismic Exploration, 32: 301-314.

The irregularity of seismic data caused by field acquisition affects the imaging
quality of subsequent seismic data processing. The reconstruction method based on
compressed sensing theory can effectively restore seismic data. The aliasing caused by
randomly missing seismic traces is distributed as white noise, and the effective signals
are concentrated in the sparse domain. This paper transforms the seismic data
reconstruction in the f-x domain into the random noise suppression problem in the
discrete cosine transform (DCT) domain. The DCT is a global transform, which
transforms the discontinuous 7-x data into the continuous DCT data. We do multi-scale
directional shearlet transform on the data in the DCT domain and eliminate the aliasing in
the DCT domain through iterative inversion. The shearlet transform after the DCT can be
used as a new sparse basis transform. The reconstruction experiments show that the
reconstruction accuracy in the DCT+shearlet domain is higher than that in the shearlet
domain.
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reconstruction effect in the DCT+shea
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THEORY
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Shearlet transform (Guo et al., 2007; Easley et al., 2008; Guo et al., 2013)
can effectively represent anisotropic characteristics of seismic data. The
rotation model of curvelet transform is replaced by shear mode.In 2D case,
for any square-integrable function A(¢), the shearlet transform is given by:

SH b(ji LK) = <b,¢f].’[,k> (11

s

where 1 Aol
8,14 (t)=|det A 2¢[B A (t—k)] , (12)

where jER',/ER, kER®, A is the anisotropic expansion matrix. B is the
shear matrix, and both A and B are second-order reversible matrices. J
is the scale parameter. / is the shear parameter, and # is the translation
parameter.

To compare the effects of the shearlet transform and the DCT+shearlet
transform, we use a 1-scale shearlet decomposition for simplification. A
synthetic shot gather of the Marmousi model is used in this study. The shot
has 512 receivers with a 10 m interval and 1 ms sampling. The shot is
decomposed into 1 low-frequency subband without directional
characteristics and 8 high-frequency subbands with directional
characteristics. The energy of 9 subbands in the DCT+shearlet domain is
more balanced than that in the shearlet domain. Fig. 1 shows the shot and its
2D-DCT, and Fig. 2 shows 9 coefficients of the shearlet decomposition. The
energy of the low-frequency subband shown in Fig 2 (e) occupies 97.13% of
that of the 9 subbands shown in Fig. 2. Fig. 3 shows 9 subbands of the
DCT+shearlet decomposition. The energy of the low-frequency subband
shown in Fig. 3(e) occupies 75.78% of that of the 9 subbands shown in Fig.3.
Table 1 is the energy ratio comparison of different subbands in the shearlet
and the DCT+shearlet domain. The energy of subbands in the DCT+shearlet
domain is more balanced than that in the shearlet domain, which is more
conducive to the data reconstruction based on iterative
shrinkage-thresholding inversion.
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Fig. 1. A shot gather of the Marmousi model (a) and its 2D-DCT data (b).
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Fig. 2. Nine subbands of 1-scale shearlet transform decomposition.
(a)-(d) and (T )-(i) Eight high-frequency subbands, and () the low-frequency subband.
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Fig. 3. Nine subbands of 1-scale DCT+shearlet transform decomposition.
(a)-(d) and (T )-(i) Eight high-frequency subbands, and () the low-frequency subband.



Table 1. Energy ratio comparison of difi
DCT+shearlet domain.

Subbands | shearlet(%
a 0.0027

b 0.1700

c 2.1900

d 0.4900

e 0.0059

f 0.0000

g 0.0000

h 0.0000

i 97.1300
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Fig. 4. The shot with 40% randomly decimated (a) and its 2D-DCT(b).
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Comparison of reconstruction results of Fig. 4 (a) in different sparse domains.

(a) Reconstructed result in the shearlet domain, (b) difference between Fig. 5 (a) and
Fig. 1(a), (¢) reconstructed result in the DCT+shearlet domain, (d) difference between
Fig. 5 (c) and Fig. 1 (a).
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Fig. 6 DCT data comparison (a) DCT of Fig 5 (a) reconstructed in shearlet domain, (b)
DCT of Fig 5 (¢) reconstructed in DCT+shearlet domain.

Fig. 5 shows the reconstruction results of Fig. 4 (a) in different sparse
domains. The reconstruction error in the shearlet domain [Fig. 5 (b)] is
greater than that in the DCT+shearlet domain [Fig. 5 (d)]. The SNR of
seismic data reconstruction in the shearlet domain [Fig. 5 (a)] is 15.42 and
that in the DCT+shearlet domain [Fig. 5 (¢)] is 17.01. Fig. 6 shows the DCT
data comparison of seismic data recovered from different sparse domains.
The spatial aliasing in the DCT domain is well suppressed after compressed
sensing reconstruction. The dct of seismic data recovered in DCT+shearlet
domain [Fig. 6 (a)] is closer to the original DCT data [Fig. 1 (b)] than that in
shearlet domain [Fig. 6 (b)].

FIELD DATA

To verify this method’s effectiveness and practicability, we conducted
trial processing on a marine shot [Fig. 7 (a)]. The shot has 380 receivers with
a 6.65 m interval and 1 ms sampling. Fig 7 (b) is the 2D-DCT of Fig 7 (a).
The shot is 30% randomly decimated [Fig. 7 (¢)]. Fig. 7 (d) is the 2D-DCT
of Fig. 7 (c). Fig. 8 shows the reconstruction results of Fig. 7 (c). The
reconstruction error in the shearlet domain [Fig. 8 (b)] is evidently greater
than that in the DCT+shearlet domain [Fig. 8 (d)]. The SNR of reconstructed
data in the shearlet domain [Fig. 8 (a)] is 5.46 and that in the DCT+shearlet
domain [Fig. 8 (c)] is 12.32. The reconstruction effect in the DCT+shearlet
domain is better than that in the shearlet domain.
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Fig. 8. Comparison of reconstruction results of Fig. 7 (a) in different sparse domains.
(a) Reconstructed result in the shearlet domain, (b) difference between Fig. 8 (a) and

Fig. 7 (a), (c) reconstructed result in the DCT+shearlet domain, (d) difference between
Fig. 8 (c) and Fig. 7 (a).
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Fig. 9. DCT data comparison (a) DCT of Fig. 8 (a) reconstructed in shearlet domain,
(b) DCT of Fig. 8 (c) reconstructed in DCT+shearlet domain.
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CONCLUSION

In this study, the DCT+shearlet trar
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