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INTRODUCTION

By receiving reflection wave infor
surface, seismic exploration can identi
ture and physical properties. When seis
ground medium, various factors includi
attenuation will lead to the energy ¢
which induces weak energy and phass
record, and the overall continuity of sei
it is challenging to effectively descrit
reservoirs and small faults. Therefore
cessing the seismic data to improve the
for oil and gas exploration and deve
seismic data contains abundant geologi
ducive to seismic interpretation, reserv
Consequently, a number of model-bas
resolution have been proposed, includ
(Robinson et al., 1967), non-stationar
technology (Margrave et al., 2011), a
technology based on one-dimensional ¢
and Moraes, 2013), low frequency br«
pressed sensing algorithm (Zhang et al
et al., 2010), spectral whitening metho
(Yan et al., 2018), wavelet compressiol
acteristic in the Fourier transform (Che
ularization inverse Q-filtering (Chen ¢



data can be identified and used to solv
data processing (LeCun et al., 2015).
learning is made up of the stacking of I:
Typical network architectures include
Among them, U-net is proposed by Ror
from full convolutional neural network
common network structures for image
SRCNN (Dong et al., 2015) and SRGA
the definition of resolution in pictures
the images, which is different from the
ics. To meet the demands of high pre
latter must build new techniques.

It is required to increase the high f
and frequency band width to enhance
broadening of the frequency band by
method to improve the resolution. The
method, which is entirely data driver
wavelet assumption. Based on the or
processing results can be acquired direx
ti-layer perceptron to effectively broad
improve the resolution of seismic data.
and Oliveira et al. (2019) simulated a d
and improved the resolution of seismic
network. Yuan et al. (2019) proposs
method based on convolutional neural 1
tion reconstruction technology. Deng ¢



Considering the structural complexity
mation lost by pooling operation will h
diction process, the ResPath (Ibtehaz et
before data fusion, which makes learnin

In this paper, by integrating a Res
training strategies to network training
work's information mining performanc
pacity to perceive low-frequency comp:
eliminates output result artifacts while
component loss in deep learning seism
using synthetic and field data.

METHODOLOGY
Network architecture

To improve the resolution of seist
network. The deep learning network :

between low-resolution sample and
ta-driven idea,

DH = Net(q, DL) .

where Net represents the network arc
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network is deepened. The third section is the feature fusion part. We con-
nect the data features obtained via the second section's residual path to the
outputs from transposed convolution, and then proceed through the convo-
lution layer (3x3), batch normalization, and residual modules successively,
obtaining an output data that incorporates all characteristics.
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Fig. 1. U-Net architecture with ResPath. There are three parts in the network, part-I trunk
feature extraction, part-I1I high and low dimensional feature transmission and part-III
feature fusion part.

The purpose of adopting Res-Unet architecture is to introduce nonline-
ar processing through the residual module. The residual module, which is
seen in the lower left corner of Fig. 1, uses a shortcut to transmit shallow
layer feature information to the deeper layer more quickly while avoiding
gradient disappearing and gradient exploding. Even if the network has nu-
merous layers, the presence of this module can still minimize training loss
values steadily and constantly, solve training challenges brought on by the
depth of the network, and guarantee that the deep learning network's per-
formance won't decline (He et al., 2016). In addition, considering that the
network will obtain different dimensional feature information after down-
and up-sampling, direct splicing would also negatively affect network train-
ing, but the nonlinear operation in the ResPath can narrow the semantic gap
between the two (Ibtehaz et al., 2019). However, deep learning suffers a
more difficult challenge with generalization than fitting. The overfitting is-
sue must be resolved because the training set is unable to cover all cases.
[offe et al. (2015) proposed batch normalization, which enables all samples
in a batch to be associated together. In this situation, a model is somewhat
protected from overfitting because it depends on other samples in the same
batch in addition to the sample itself. The specific form of batch normaliza-
tion is
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The MS-SSIM function system is shown in Fig. 2. Multi-scale means
that data indicators need to be measured at different scales. The original
seismic data is defined as X, and the seismic data after 4 subsampling is de-
fined as X35.
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Fig. 2. Structure of multi-scale structure similarity loss function.

The MS-SSIM function uses filter operators of different sized to ex-
pand the receptive field, catching statistical characteristics on various scales
while preserving consistency with subjective perception. The definition of
the function is showed as follows:

x5 =[x H[c S Is, (e )] (5)

where x and y represent the data following the down sampling of
high-frequency labels and network output separately. «, 5 and y, are
used to adjust the relative importance of different similarity degrees. In this
paper, we set @ = 0.1333, 5, =y, = [0.0448, 0.2856, 0.3001, 0.2363,
0.1333]. The three measures between x and y are denoted by the parameters
¢,(x.y), s;(x,»),and I(x,y), which stand for the wavelet's width, structure,
and amplitude in seismic data. These are their definitions:
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where & and O are the mean and standard deviation of the seismic data
respectively, and O, are the covariance between x and y. Three constants,
Ci, G5, and G5 ensure the stability of the operation. It must be noted that co-
variance U, can be of negative value which may lead s(x,y) to be of
negative number. To ensure that the range of MS-SSIM value is 0 to 1, we
need to modify it as a loss function. We can achieve the goal with a simple
transformation and the transformation is defined as:

""‘5' S (yuus ”y[ned) =1 _(1 + f(ymu ’ypmd))/ 2 = (9)
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In order to improve the perception of recovered high-resolution seismic
data, we combine the MAE loss and MS-SSIM loss as a new loss function
defined as:

Lmix - aLM’IE + (1_ a)LMS—SﬂM , (10)

where @ is the weight of MAE function in the mixed loss function. With
reference to the experiments of Zhao et al. (2016), we set different weight
values for the loss function and compared the training results of the network
with different weights to evaluate the effectiveness of the mixed loss func-
tion in enhancing the resolution of seismic data. Table 1 displays the value
of the PSNR (peak signal-to-noise ratio) during the training process with
different weights. When o =1 and 0.16, it demonstrates that our network
has attained good performance. Fig. 3's comparative findings include the
model output at @ values of 1 and 0.16, where @ =1 represents training
outcomes when only the MAE function is used as a loss function. When
compared to the original data, the MAE output (Fig. 3¢), which is displayed
close to the red rectangles, indicates that the seismic events in the upper part
of the seismic data appear to be artifacts and that the resolution of the strata
at the bottom of the data was not significantly improved (Fig. 3a). The re-
covered seismic data appears more realistic when @ = (.16, which is an
appropriate parameter choice, when comparing the output of mixed loss of
various weights.

Table 1. PSNR in the training process with different loss function weights.

a 1 0.8 0.6 0.4 0.2 0.16 0.1 0

PSNR | 22,5126 22.0756 21.1443 219426 21914 224532 22116 21.6869

Fig. 3. Comparison of high-resolution labels with the different loss function weight fac-
tor a. (a) original seismic data sample; (b)-(c) a are 0.16 and I, respectively. The red
rectangles represent the difference.



NETWORK TRAINING
Data preparation

There must be many samples an
learning network to be trained. It has bc
data as the training set in the training
fluenced by irrelevant factors such noi
will lead in the network's entire mappi
al. (2019) proposed to train the networl
cation and applied it in field data, gre:
identification. Wherefore, we use reflc
volve with seismic wavelet of varion
low-resolution sample and high-resolut
Ricker wavelet to make low-resoluti
high-frequency component informati
high-resolution labels. We utilize
high-resolution labels because its mai
lobe amplitude is small, its waveform
the amplitude spectrum is relatively loy
1996). The specific forms of zero-phass
wavelet W, are:

(W, () = (1= 2@z f.0)* )™
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Fig. 4. (a) Low-resolution samples; (b) high-resolution label.

Pre-training

Pre-training may significantly increase the network’s performance and
effectiveness for data mining in deep learning training. The pre-trained
model is trained by the enormous data first, and then it is applied to the task.
Pre-training is a popular and efficient method for transferring information
from target tasks to related tasks. This method can provide the model a
high-quality initialization, enhancing the model's performance. Strong port-
ability exists for the spatial features that were learnt from the pre-training
network. Considering that seismic data with different main frequencies have
similar spatial structure characteristics and have portability, we used the
pre-training strategy to carry out the resolution improvement task.

While the layer towards the top of the model extracts the more abstract
feature map, the layer near the bottom extracts the local, more generic fea-
ture map. To preserve the shallow spatial features in the reuse model and
account for some differences between the new and the original data sets, we
reset some parameters at the top of the pre-training network. We slightly
modified the more abstract representation to make the network more appli-
cable to the issue at hand. Specifically, we pre-trained the network using the
low-resolution samples and the corresponding high-resolution labels pro-
vided as open-source (Fig. 5) by Li et al. (2020), using 3000 pairs as train-
ing sets and 200 pairs as validation sets. We then used the data we generated
(Fig. 4) to re-train the network, using 450 pairs as training sets and 50 pairs
as validation sets.

The amplitude of seismic data obtained in the same region may fluctu-
ate noticeably depending on the collecting conditions, geological structure,
and burial depth. The data that is directly processed is evidently inconsistent
with the features of seismic data because the ReLU activation function used
after each convolution layer will set the negative elements to zero. There-
fore, we should first preprocess samples and labels before training, that is,
normalize all the seismic data to be trained, so that the training data is closer
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to the relative amplitude relationship between the original data. The form of
normalization processing is as follows:

¥ = X = Xin
xmax _xmin ’ (12)
where x* is the normalized value of seismic data, x is the real value of
each point in the seismic data, and x, and x_ are the maximum and
minimum values of each input seismic data respectively. The normalized
data are all in the range of [0,1], which avoids the influence of the differ-
ence in seismic amplitude of different data sets. To further boost the diver-
sity of the data set, we also added a simple geometric manipulation which
required randomly flipping pairs of data. The network test environment was
NVIDIA GeForce RTX 2080Ti GPU and the memory was 11GB. In the
process of configuring the compiler, we used the Adam optimizer and set
the parameter 5 =09, 5 =0.999, € = 10", At the same time, the loss
function is a weighted combination of MAE loss and MS-SSIM loss with
@ = 0.16, and PSNR is used as the metrics function of the model. The
metrics function is only used to evaluate the network capability and will not
participate in the adjustment of network parameters in the process of back
propagation.

Fig. 5. Open source high and low frequency data by Li et al. (2020).

First of all, we trained the network for the first time using open-source
data by Li et al. (2020). We set the parameter batch size = 64, learning rate
=0.001, and train our network over 50 epochs. After about 30 iterations, the
network has converged. The validation set's loss function achieved 0.022
and the PSNR hit 23.7 after 50 iterations. It took roughly 30 minutes to
complete the process. The loss function and PSNR curve are both replaced
with an exponential moving average for interpretability. In Fig. 6 below, the
training's loss function and metrics function curves are displayed.
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Fig. 6. Loss and metrics curves during network pre-training.

After pre-training the network, we altered the parameters of the three
residual modules at the top of the network (the section highlighted in red in
Fig. 1) to an updateable state to obtain a new network with improved per-
ception capabilities for certain frequencies. And then, we employ 500 pairs
of seismic data obtained using a Ricker wavelet and wide band wavelet as
samples and labels, of which 450 pairs are used to train the new network
and the remaining 50 pairs to validate it. In a new round of training, consid-
ering the network already has a certain frequency enhancing capability, the
learning rate parameter of Adam optimizer is set as 0.0001. At the same
time, we set the epoch parameter to 100 and the other parameters remain
unchanged. The ability of the new network changes with the number of iter-
ations, and its training curve is shown in Fig. 7. The network performs bet-
ter on the validation sets in the early stages of training since there are fewer
number of validations set and their distribution is uneven. As network train-
ing times arise, the network will eventually converge after around 50 itera-
tions, at which time the loss value will ultimately reach 0.072 and the PSNR
will reach 22.7, taking about 10 minutes. We now think that the network has
picked up a new mapping mode.
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Fig. 7. Loss and metrics curves for network training.
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We randomly select a seismic profile in the validation set for frequency
enhancement (Fig. 8). Fig. 8a shows the low-resolution data with noise, Fig.
8b shows the seismic data produced by the model, and Fig. 8c shows the
high-resolution label corresponding to a. Compared with Fig. 8a, Fig. 8b has
enhanced some small layer features, as shown in the two red rectangles in
the figure. Even in low-resolution seismic data, there are some traces that
cannot be discriminated by the naked eye between the two layers; however,
the network can effectively recover these thin layers. Additionally, the net-
work obviously has a denoising effect.

Fig. 8. Comparison test in a validation set. (a) Low-frequency data; (b) Model output
data; (c) High-frequency label

Finally, the mean absolute error, mean square error and multi-scale
structural similarity between a, b and ¢ were calculated. Table 2 demon-
strates that b is located between values a and ¢ in various numerical repre-
sentations. Compared with the original data a and ¢, b and ¢ are more simi-
lar.

Table 2. Numerical comparison between a, b and c.

aand ¢ aandb b and ¢
MAE 17.410965 13.707064 9.743504
MSE 500.5979004 307.0289307 177.3246453

MS-SSIM 0.876802908 0.871912015 0.965872094
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DATA APPLICATION
Synthetic data example

To verify the improvement of pre-training on the overall performance
of the network, the model was first used for synthetic data and compared it
with the effect of the network trained only once using our data. Firstly, we
use Ricker wavelet with a peak frequency of 40 Hz to make synthetic data
and add gaussian noise with a signal-to-noise ratio of 6.5 to simulate the real
strata. Because the model only handles data within the range [0,1], we must
first normalize the synthetic data. In addition, the network was downsam-
pled for four times, so the length of data input to the network must be a
multiple of 16. We set the size of the synthetic data to 1200x800.
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Fig. 9. Comparison of network effect of pre-training or not. (a) Original data;
(b) Model output of the pre-training network; (¢) model output of the network trained
only once using our data.
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We put the synthetic data into both the network trained only once using
our data and the network trained by the method in this paper. It is discov-
ered that the pre-training strategy may enhance the performance and effec-
tiveness of the network for data mining by comparing the output results of
the two ways. The main frequency component of the synthetic data is
around 25 Hz, as seen in Fig. 9a. The high-resolution data output by the
network is shown in Fig. 9b. Besides the 25 Hz portion, the 60 Hz portion of
the main frequency component is also mined; Fig. 9b illustrates this trend in
a clear example. The output of the model trained only once using our data is
displayed in Fig. 9c. The main frequency component is enhanced to roughly
60 Hz, which has a positive effect on the profile, but the bandwidth is nar-
rowed and the low frequency component is lost. Importantly, the enhanced
frequency is unwarranted.

Fig. 10a shows an example where a low-resolution seismic data is di-
rectly using the synthetic data showed in Fig. 9a. Feeding this native data
into our trained CNN model, we obtain an improved seismic data shown in
Fig. 10b. From the overall effect, the seismic data has thinner layer and its
longitudinal resolution is improved effectively after network processing. At
the same time, the layers are smoother and cleaner, and its fault structure is
obviously retained. The zoomed-in views of the synthetic data and the mod-
el's output data may be seen in the red rectangles, which are shown in more
detail. The model recovers the structures shown by the arrows, which rep-
resent thin layers that are blurred on the low-resolution seismic data or re-
gions with modest amplitude fluctuations. In addition, the model effectively
removes the noise from the original data.

o 200 400 600 800 1000
Traces number

0 200 400 600 800

Traces number

1000

Fig. 10. Comparison test in a synthetic data. (a) Original data and (b) the output of the
model.
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Spectrum analysis of the original data and the model output (Fig. 10) is
illustrated in Fig. 11. The blue and red curves reflect the amplitude spectrum
of the original data and the amplitude spectrum of the model output data,
respectively, and the green arrows indicate the source of the variation in the
high-frequency component. It is clear from spectrum analysis that the model
significantly enhances the upper cut-off frequency, greatly improves the
main frequency of seismic data, and notably widens the frequency band.
The main frequency of seismic data is enhanced from 35 Hz to roughly 41
Hz while the low-frequency component is maintained, enhancing the longi-
tudinal resolution of the data.

1.0 Original data
—— Frequency enhanced data
0.8
o
3 0.6
=
Q
< 04
0.2
KRR v
0 25 50 75 100 125 150 175 200

Frequency(Hz)

Fig. 11. Spectrum analysis of the synthetic seismic data.

FIELD DATA APPLICATION

We use the field seismic data (Fig. 12) of a work area as the data to be
trained to test the network's processing effect on the field data.

The work area has 251 Xlines and 21 Inlines with a 2 ms time sam-
pling rate. We used the Fourier transform to analyze it, and the spectrum
ranges from 17 to 56 Hz. First, we randomly extracted a 2D section with a
size of 736x640 from the field data and normalized it. Once the field data is
entered the model, enhanced resolution seismic data can be obtained in a
few milliseconds. Fig. 13 illustrates the observation of the model's output
data, which reveals the identification of hidden strata in seismic events, a
significant improvement in the resolution of the seismic data, and a large
reduction in noise.
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Fig. 12. Field data.
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Fig. 13. Experimental results of proposed method on field seismic data. (a) Actual
low-frequency data and (b) corresponding network output results.

Fig. 14 corresponds to the data in the green and red rectangles in Fig.
13, respectively. More details can be clearly observed from the enlarged
display. Some difficult to distinguish thin layer structures in the data before
processing are identified after processing, among which the parts marked by
arrows are some thin layer structures identified by the model, and the longi-
tudinal resolution of seismic data is significantly improved. The test on the
field data demonstrates that, despite the obvious differences between the
field data's frequency band range and signal-to-noise ratio and the training
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data's, the training model still clearly enhances the frequency of the field
data. This shows that the training model has a reliable generalization ability
and can be applied to the frequency enhancing of the field data.

Fig. 14. Detail comparison of red and green boxes. (The left side is the actual data; the
right is the network output data).

We performed a spectrum analysis using the Fourier transform on the
field data and model output data to further demonstrate how the method im-
proved the resolution of seismic data, as shown in Fig. 15. The amplitude
spectrum of field data is represented by the blue curve, the amplitude spec-
trum of model output data are represented by the red curve, and the source
of the enhancement of the high-frequency component is shown by the green
arrow. By comparing the amplitude spectrum, we find the trained network
enhances the upper cut-off frequency while retaining the low-frequency
signal, effectively broaden the frequency width of the seismic data, and ob-
viously recovers the high-frequency signal above 50 Hz, enhancing the main
frequency of the seismic data from 36 Hz to 50 Hz.
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Fig. 15. Spectrum analysis of field data.
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Fig. 16. Comparison of time-frequency decomposed seismic section. (a, ¢, e and g are the
frequency division profiles of the field data; b, d, f and h are the frequency division pro-
files after processing; a and b are 20 Hz single frequency profiles; ¢ and d are 40 Hz sin-
gle frequency profiles; e and f are 60 Hz single frequency profiles; g and h are 80 Hz

single frequency profiles).
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CONCLUSIONS
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