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ABSTRACT

Zhang,  M.,  2023.  Efficient  3D seismic  acquisition  design  using  compressive  sensing 
principles. Journal of Seismic Exploration, 32: 427-454.

         The ability to acquire 3D seismic data efficiently and cost-effectively is a major 
consideration in many applications. One way to achieve this goal is through the theory of 
compressive  sensing.  Compressive  sensing  uses  sparse  acquisition  designs  combined 
with  the  post-acquisition  reconstruction  to  reduce  the  number  of  sensors.  Sensor 
deployment  or  sampling  pattern  is  a  critical  component  in  compressive  sensing. 
Therefore, we analyze sampling patterns based on a Spectral Resolution Function (SRF) 
to improve the quality of acquired data. We have investigated two types of sparse seismic 
acquisition designs that use fewer receivers deployed irregularly, and also have compared 
three  proposed  reconstruction  methods  for  each  acquisition  design.  We  predict  the 
reconstruction accuracies of these six strategies, and then we verify our prediction using 
SEAM seismic dataset. SEAM seismic data examples demonstrate three major results: 
First, irregular line and irregular point patterns have different properties of SRF, and these 
properties  can  be  applied  to  improve  the  accuracy  of  compressive  sensing  results. 
Second,  a good combination of acquisition design and post-acquisition reconstruction 
selected based on the properties of SRF is able to obtain better reconstructed shot gathers 
and imaging results. Third, numerical simulations show that we can reconstruct single 
shot  gather  using  only 25% of  receivers  and then  produce  seismic  migration  images 
comparable to those obtained from the full shot gathers. The overall results indicate that, 
the combination of a sparse acquisition design and corresponding compressive sensing 
reconstruction method could help facilitate a new generation of cost-effective seismic 
acquisitions.

KEY WORDS: acquisition design, compressive sensing, seismic acquisition,
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INTRODUCTION
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3D seismic method is among the most powerful geophysical methods 
since it  can capture accurate  geological  information and facilitate  energy 
exploration and production. However, 3D seismic acquisitions are costly and 
time  consuming  since  both  expensive  sensors  and  a  huge  number  of 
receivers are needed. One way to reduce the cost of 3D seismic acquisitions 
is to develop inexpensive sensors, which is an on-going effort. Meanwhile, 
an alternative way is to reduce the number of sensors deployed in a survey. 
The massive number of sensors required comes from the use of dense grids 
of  uniformly  placed  sources  and  receivers.  Use  of  uniform  and  dense 
sampling designs is dictated by the practical  ease of data acquisition and 
Shannon-Nyquist  sampling  theory.  Shannon-Nyquist  sampling  theory  is 
based on Fourier data processing and sampling criteria to avoid aliasing, and 
establishes a sufficient condition for the sample rate to capture the desired 
information.  Therefore,  the  uniform locations  of  shots  and  receivers  we 
apply  in  3D  seismic  acquisition  also  provide  a  sufficient  condition  for 
obtaining  subsurface  images.  This  equal-interval  and  high-density 
acquisition strategy ensures high-quality seismic data but incurs a great cost.
Equal-interval seismic surveys collect a massive number of samples. This 
number  of  samples  required  by  Shannon-Nyquist  sampling  theory  is 
sufficient, and some of these samples are redundant. It is therefore logical to 
think  that  a  subset  of  full  Nyquist  samples  is  still  able  to  retain  the 
information we need. Thus, some research has been conducted on how to 
avoid such an expensive, dense seismic data acquisition mode, and focus on 
different deployment patterns using fewer receivers and sources.

Compressive sensing (Donoho, 2006; Wakin et al., 2006; Candès and 
Wakin,  2008)  provides  such  a  solution  for  special  deployment  patterns. 
Compressive sensing theory states that it is possible to reconstruct a signal 
from a sparse set of irregular samples if the signal has sparse coefficients in 
a transform domain. Compressive sensing has seen successful applications 
in other fields such as Magnetic Resonance Imaging (MRI) (Lustig et al., 
2007,  2008)  and  single-pixel  camera  (Baraniuk  and  Kelly,  2007).  These 
applications show that compressive sensing can reconstruct a signal from a 
sparse set of samples with irregular intervals (Candès et al., 2006; Wakin et 
al.,  2012)  instead  of  full  samples  using  regular  intervals.  These 
developments are highly counter-intuitive to the familiar thinking based on 
Shannon-Nyquist theory.

Compressive  sensing  has  had  successful  examples  in  the  medical 
community (Donoho and Tsaig, 2008; Donoho and Tanner, 2010; Donoho et 
al.,  2012; Tsaig and Donoho,  2006).  In exploration seismology,  which is 
costly  to  acquire  data,  compressive  sensing  has  also  inspired  new 
approaches to data acquisitions (Herrmann, 2009; Janiszewski et al., 2017; 
Brown et al.,  2017; Milton et al.,  2012). Simultaneous source acquisition 
(Mosher et al., 2017, 2012; Li et al., 2017) is one of such applications by 
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performing  source  deblending  using  compressive  sensing.  This  type  of 
acquisition reduces the acquisition time by focusing on the source.

However,  in  onshore  and  ocean  bottom seismic  surveys,  the  more 
expensive  part  is  the  deployment  of  dense  receivers  or  nodes.  These 
acquisitions are also faced with the difficulties caused by limited access to 
deploy sensors on private properties or in difficult terrains or bathymetry. 
Therefore,  trying  to  develop  a  more  efficient  method  by  working  with 
receivers  is  a  logical  route  and  complements  the  source-related  efficient 
acquisition methods such as simultaneous sources (Wason and Herrmann, 
2013; Abma et al., 2015). We pose the following question: Can we explore 
different receiver patterns to design sparse acquisitions using fewer receivers 
and then reconstruct  the dense data  for  next  step to use with established 
processing and imaging methods?

To  answer  this  question,  we  have  developed  two  types  of  sparse 
acquisition designs. For each acquisition geometry, we have also proposed 
three different reconstruction methods using compressive sensing theory. We 
then evaluate these six seismic data acquisition methods. Our contributions 
from this work include defining the sampling pattern analysis and applying 
these  analyses  to  inform  acquisition  design  and  data  reconstruction. 
Moreover,  our  demonstrations  show  that  it  is  possible  to  achieve  high-
resolution  data  reconstruction  with  a  low-cost  acquisition.  Lastly,  our 
research  can assist  in  low-cost  acquisitions in  seismology including both 
ocean bottom cable (OBC) and ocean bottom node (OBN).

Our work is divided into two steps, the first step is acquisition design, 
and the second step is reconstruction. In contrast to the research focusing on 
compressive  sensing  reconstruction  (Zwartjes  and  Gisolf,  2007;  Zhang, 
2020, 2021) using random sampling (Moldoveanu, 2010; Moldoveanu et al., 
2018; Zhang and Li,  2021; Zhang, 2022; Zhang and Li,  2022), our work 
focuses on acquisition design using an information criterion to distinguish 
between different patterns. Compared with Naghizadeh and Sacchi (2010)’ 
research, our research uses a different combination of the three components 
in compressive sensing. Our work demonstrates that a good combination can 
help significantly reduce the number of samples required.

In this paper, we will first introduce two types of sparse acquisition 
designs and propose three compressive sensing reconstruction strategies for 
each acquisition design. We then analyze the sampling pattern and predict 
the reconstruction accuracy among these strategies. At last, we demonstrate 
our acquisition design and reconstruction strategies on the SEAM seismic 
data set, and test our prediction on seismic shot gather and imaging results.

TWO SPARSE ACQUISITION DESIGNS
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We will investigate two types of sparse acquisition designs. One is to 
simulate  ocean  bottom cable  (OBC),  and  the  other  is  to  simulate  ocean 
bottom node (OBN). Both have practical applications.

In seismology, we usually deploy the receivers with regular intervals 
on the earth’s surface or ocean bottom, such as illustrated in Fig. 1(a). We 
obtain a 3D volume from such a full acquisition design, which means the X-, 
Y-, and t-directions are all fully sampled. we use the term desired full data to 
represent this hypothetical 3D volume in Fig. 1(a) in this paper. Compared 
with the easily obtained full samples in the t-direction, full sampling in X- 
and Y-directions  requires  a  huge number  of  receivers,  and  leads  to  high 
acquisition costs. To overcome this difficulty, we apply compressive sensing 
theory to reduce the number of receivers needed.

If we use the receivers affixed on a cable (henceforth reference to as 
cabled  receivers)  on  such  as  streamers  or  OBC,  we  can  deploy  these 
receivers  as  irregularly  spaced  lines  to  form  a  sparse  acquisition  as 
illustrated in Fig. 1(b), where the variable is the line spacing. In this case, we 
have the full sampling in t- and X-directions marked by lines, and sparse 
irregular  sampling  in  Y-direction.  A compressive  sensing  reconstruction 
algorithm can then be used to recover the missing samples.

Besides the cabled receivers, the individually deployed receivers such 
as single sensors on land and OBN, makes the scattered deployment in 2D 
possible. Therefore, we can also design a sparse acquisition geometry such 
as the irregular points illustrated in Fig. 1(c). In this scenario, we have the 
full  sampling in  the t-direction marked by the lines,  and sparse irregular 
sampling in X- and Y-directions. Post-acquisition reconstruction algorithm 
will recover the missing samples.

Fig. 1. Conceptual illustration of sparse acquisition designs for 3D seismic data. (a) 
Desired  full  data  set,  and  full  sampling  in  three  directions;  (b)  irregular  line  acquisition,  full 
sampling in t- and X-directions, (b) irregular point acquisition, full sampling in t-direction.

We illustrate these two practical sparse acquisitions respectively by 
the concepts of irregular line and irregular point survey designs in Fig, 1. For 
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simplicity, we only plot a line without sample dots if that direction is fully 
sampled. Since we denote the full samples in a given direction as lines, the 
full  sampled  survey  lines  and  the  samples  in  the  t-direction  are  both 
represented by lines. These ‘line’ samples are treated the same way in the 
stage of compressive sensing reconstruction algorithm. Moreover, we will 
call the two geometry designs irregular line acquisition and irregular point 
acquisition respectively.

THREE METHODS FOR POST-ACQUISITION RECONSTRUCTION

To obtain the desired fully sampled data in Fig. 1(a), we must first 
reconstruct such a fully sampled 3D volume from the sparse data acquired 
from acquisitions in Figs. 1(b) and 1(c),  and can then use the reconstructed 
data in the traditional  processing and interpretation. A natural question is 
how to reconstruct these sparse data volumes? An intuitive approach is to 
input all the available samples in the sparse 3D volume into the compressive 
sensing algorithm and obtain the dense data set assembling the desired full 
3D data volume. However, besides this strategy of inputting all samples, we 
propose two more strategies to do the reconstruction. One is to divide the 3D 
sparse data set into subset of horizontal slices to reconstruct the samples in 
each subset individually. The other is to divide the 3D data set into subset of 
vertical slices and do reconstruction of each subset. We will illustration these 
three reconstruction strategies in the following.

For  the  irregular  line  acquisition  in  Fig.  1(b),  we  have  a  limited 
number of cabled receivers, we deploy these available groups of receivers 
along irregular lines. Compared with the desired 3D volume with regular full 
samples in X-, Y- and t-directions, the sparse 3D volume from irregular line 
acquisition has full samples in one direction and irregular sparse samples in 
the other direction, such as the irregular lines in these  Y-t  plane and  X-Y 
plane.  We  examine  three  reconstruction  methods illustrated in  Fig. 2. 
Fig. 2(a) illustrates that we reconstruct this data volume with a whole 3D 
dataset. Fig. 2(b) shows that we subdivide the sparse samples into vertical 
subsets  and reconstruct  each subset  independently,  then we assemble  the 
reconstructed results together to form the reconstructed 3D data. Fig. 2(c) 
shows that  we work in  a  similar  way but  group the sparse samples into 
horizontal subsets.

For  the  irregular  point  acquisition  in  Fig.  1(c),  we  have  scattered 
receivers  instead  the  cabled  receivers.  We  can  deploy  these  available 
receivers  irregularly,  and obtain a  corresponding sparse 3D seismic  data. 
Compared with the desired 3D volume with regular full samples in X-, Y- 
and t-directions, the sparse 3D data volume from irregular point acquisition 
has regular full samples in the t-direction denoted by the vertical black lines, 
but  has  sparse  irregular  samples  in  X-Y directions  as  illustrated  by  the 
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scattered dots. In the same way as for the irregular line acquisition, we also 
present  three  reconstruction  methods  for  irregular  point  acquisition 
illustrated in Fig. 3. One method is to use a whole 3D dataset as input of 
compressive sensing algorithm to reconstruct the desired full data from the 
sparse data volume shown in Fig 3(a). The other two methods are to group 
the sparse samples into vertical and horizontal subsets respectively, and then 
reconstruct each slice individually shown in Figs. 3(b) and 3(c).

Fig. 2. Conceptual illustration of a 3D volume of seismic data from irregular line acquisition. 
(a) The full 3D volume of sparse samples as a whole set is equivalent to random lines in 
3D, (b) When considering vertical cross-sections as subsets, the sampling pattern is equivalent to 
irregular lines, (c) The subsets of time slices have a sampling pattern equivalent to irregular 
lines too.

Fig. 3. Conceptual illustration of a 3D volume of seismic data from irregular point 
acquisition. (a) The full 3D volume of sparse samples as a whole set is equivalent to the 
mixture of irregular lines and irregular points in 3D. (b) When considering vertical cross- 
sections as subsets, the sampling pattern is equivalent to irregular lines, (c) The subsets of 
time slices have a sampling pattern equivalent to irregular points.

Overall, we design two types of sparse acquisition patterns: irregular 
line and irregular point.  For each of two acquisition designs, we develop 
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three post-acquisition reconstruction methods from the whole 3D samples, 
from  the  vertical  subsets  and  from  the  horizontal  subsets.  We  test  and 
compare a total of six reconstruction strategies.

SIX RECONSTRUCTION STRATEGIES USING COMPRESSIVE 
SENSING

Following the establishment of the two sparse acquisition designs and 
three  different  reconstruction  methods,  we  now  have  six  potential 
reconstruction strategies shown in Fig. 4. For a shot gather, we can obtain 
two sparse shot gathers from two irregular acquisitions, i.e., irregular lines 
and  irregular  points.  For  each  acquisition,  we  apply  three  different 
reconstruction strategies:  vertical  subsets,  a  whole set,  horizontal  subsets. 
After implementing the same compressive sensing reconstruction algorithm 
with different input dataset, we will obtain six different reconstructions of 
the shot gather. We also conduct the reconstruction for all shot gathers and 
perform RTM to obtain six different  imaging results.  We then check our 
predictions of qualities for all reconstructed shot gathers and RTM images 
obtained from workflow in Fig. 4.

Fig. 4. Workflow from sparse acquisition to imaging. We apply two types of irregular 
acquisitions: line-based and point-based. For each acquisition, there are three strategies to 
reorganize the dataset. Therefore, we obtain six different data input. We then implement 
compressive  sensing  reconstruction  algorithm  and  RTM  imaging,  and  will  have  six 
reconstruction results and six imaging results for comparison.
Review of compressive sensing algorithm
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Given that our investigation and demonstration depend on the use of 
compressive sensing reconstruction of shot gathers, we first briefly introduce 
compressive sensing algorithm here.  Compressive sensing is a method to 
reconstruct a signal from a sparse set of samples (Donoho, 2001; Candès and 
Tao,  2006;  Candès  et  al.,  2006).  Let   be  the  sparse  samples,   is  the 
sampling pattern, is the reconstruction result over a fine grid we are looking 
for. Compressive sensing formulates an optimization problem (Candès and 
Boyd, 2008),

          (1)

where  is a transform operator, and we use total variation (Rudin, 1992) in 
this  paper.  To  minimize  L1-norm  objective  function,  we  apply  primal 
logarithmic  barrier  method  (Nocedal  and  Wright,  1999;  Candès  and 
Romberg, 2005) to solve eq. (1). The primal logarithmic barrier method has 
been used previously for geophysical inversions with inequality constraints 
(e.g., Li and Oldenburg, 2003). The compressive sensing theory states that 
we can reconstruct from the sparse samples  with a high probability as long 
as  satisfies the restricted isometry property (RIP) (Candès et al., 2006). 
 is an error parameter associated with noise level in the samples .

Sampling pattern, transform operator and optimization algorithm are 
three essential parts of compressive sensing. Presently, most applications in 
seismology focus on either the different optimization algorithms (Li et al., 
2017), or different transforms (Herrmann et al., 2009), however, not much 
work is  done to  the  sampling pattern,  which is  significant  in  acquisition 
design. Our work in this paper focuses on sampling pattern in compressive 
sensing.
 

To reconstruct the 3D seismic data from two sparse acquisitions using 
compressive sensing algorithm, we fix the transform operator  in equation 
1 and use the same optimization algorithm, different sampling pattern  will 
lead to different reconstruction accuracy for the signal . We will check the 
reconstruction accuracies using SEAM data later. 

COMPARISON OF SIX STRATEGIES FROM SPARSE ACQUISITIONS

For  these  six  reconstruction  strategies,  there  are  some  similarities 
among  them.  We  can  conceptually  catalog  these  into  different  sampling 
patterns  in  reconstruction  stage  as  shown in  Fig.  5  (Zhang  and  Lumley, 
2019): (a) irregular lines, (b) mixture of irregular lines and irregular points, 
(c)  irregular  points.  Six  acquisition-reconstruction  strategies  have  been 
cataloged  into  three  sampling  patterns  when  using  compressive  sensing 
reconstruction  algorithm.  We define  a  spectral  resolution  function  in  the 
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following to check the reconstruction performance of these three sampling 
patterns.

Fig. 5. Three different sampling patterns (Zhang and Lumley, 2019). (a) The sampling 
pattern of irregular lines, (b) the sampling pattern of mixture of irregular lines and irregular 
points, (c) the sampling pattern of irregular points.

Spectral resolution function (SRF)

For these three sampling patterns, it is hard to directly compare them. 
We define a Spectral resolution function (SRF) to check the performance of 
different sampling patterns. We denote sampling pattern to be Φ, and define 
Spectral resolution function (SRF) as,

      ,                                (2)

where   is  the Fourier transform,  –1 denotes the inverse,  and  are indices 
denoting the positions within the SRF in the 2D Fourier domain after sparse 
sampling pattern.  is the test signal, which has single spike at the location of 
in  the 2D Fourier  domain,  and can be inverse transformed to a  sinusoid 
signal in the space domain.

We  illustrate  SRF  using  Nyquist  full  sampling  and  sparse  regular 
sampling pattern in Figs. 6 and 7 separately. Fig. 6 illustrates the SRF when 
the  sampling pattern   satisfies  Nyquist  theory.  The  original  signal  is  a 
single  sinusoid  in  the  space  domain  [Fig.  6(b)],  and  its  corresponding 
representation in the wavenumber domain is a single spike [Fig. 6(a)].  After 
applying full Nyquist sampling [Fig. 6(c)], we have the samples in Fig. 6(d) 
and obtain the SRF in Fig. 6(e). The SRF of a full sampling pattern is a 
single spike as in Fig. 6(e), i.e., there are no artifacts and  when  and .
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Fig. 6. (a) A single spike over a zero background, it is the 2D Fourier transform of the 
sinusoid signal in (b). (c) The sampling pattern: Nyquist full samples (d) sparse samples 
overlaid on the original sinusoid signal, (e) the SRF of the full sampling pattern.

Fig. 7. (a) and (b) are the same single spike and the 2D sinusoid signal as in Fig. 6(a) and 
6(b), (c) the sampling pattern: regular sparse samples, the subsampling ratio is 25%. (d) 
sparse samples overlaid on the original sinusoid signal, (e) the SRF of the regular sparse sampling 
pattern.
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We want to acquire fewer samples than those required for full Nyquist 
sampling, so we next examine the SRF of different sparse regular sampling 
patterns. Following the same approach as in Fig. 6, we test the sparse regular 
sampling  pattern  in  Fig.  7.  After  applying  sparse  regular  sampling  [Fig. 
7(c)], we have the samples in Fig. 7(d). We fill the missing points with zeros 
and then apply an FFT to obtain the SRF in Fig. 7(e). The SRF of a regular 
sparse sampling pattern shows significant  aliasing as shown in Fig.  7(e). 
Compared with the full samples satisfying Nyquist theory, this case of sparse 
regular sampling below Nyquist, generates artifacts and  when  and .

The above two examples show two extreme situations: one has zeros 
artifacts, and the other has artifacts that are significant enough to completely 
mask  the  true  coefficient  in  the  wavenumber  domain.  The  SRF  in  this 
context  quantifies  the  strengths  and  distributions  of  artifacts  in  the 
wavenumber domain, and we can use SRF to measure the leak of a unit 
impulse in 2D Fourier domain after a sparse sampling pattern is applied. 
Such  a  definition  of   is  useful  for  understanding  the  resolution  in  the 
wavenumber  domain  and  measuring  the  performance  of  sparse  sampling 
pattern  in space domain.

To be used as an indicator to evaluate the performance of different 
sampling pattern , the definition of SRF in this paper is slightly different 
from the definition of similar quantities by other authors (Herrmann, 2009; 
Zhang and Lumley, 2019). The incoherence parameter defined by Herrmann 
(2009)  involves  the  transform  matrix  to  estimate  the  performance  of 
compressive sensing,  and the randomness function defined by Zhang and 
Lumley (2019) focuses on the reconstruction algorithm. However, since we 
focus  on  acquisition  design  in  this  paper,  we  define  SRF  to  assess  the 
performance of  sampling patterns.  It  is  reasonable  that  the  evaluation  of 
sampling patterns does not  depend on the reconstruction algorithm. With 
such a definition, we can use SRF to evaluate and compare the sampling 
patterns themselves.

We note  that  SRF is  similar  to  the wavenumber  response  used by 
Naghizadeh and Sacchi (2010). However, we use SRF only to analyze the 
characteristics  of  sampling  pattern  in  this  work  and  employ  a  different 
transform for  reconstruction  (i.e.,  total  variation).  Fourier  transform is  a 
good  spectral  analysis  tool,  but  not  an  ideal  transform  to  be  used  in 
reconstruction  stage.  Since  compressive  sensing  reconstruction  requires 
sparse coefficients in the transform. For general signals, Fourier coefficients 
are not sparse, which means that we may produce non-ideal reconstruction 
results. Therefore, in our work the Fourier transform is used as an analysis 
tool, but not used in the stage of reconstruction.

Analysis using SRF
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We  calculate  the  SRFs  of  the  three  different  sampling  patterns: 
irregular lines, irregular points, and a mixture of irregular lines and points 
shown respectively in Figs. 8, 9 and 10. Compared with the regular sparse 
sampling in Fig. 7, the sampling pattern of irregular lines in Fig. 8 shows 
different amplitude and distribution of artifacts in the wavenumber domain. 
The true coefficient, which is the largest spike in the SRF, stands out and can 
be  identified  against  the  small  background  artifacts.  We  notice  that  the 
artifacts  of  SRF  in  Fig  8(e)  show up  only  in  the  kX-direction,  and  this 
phenomenon is consistent with the sparse samples in the X-direction from 
the  irregular  line  pattern.  Compared  with  the  sparse  regular  pattern,  the 
irregular  line pattern improves the resolution in  the wavenumber  domain 
since  the  true  coefficient  stands  out.  However,  there  exists  some  large 
artifacts degrading the resolution, and these artifacts may be mistaken as true 
coefficients. If we adjust the sampling pattern to be distributed more broadly 
in two directions, such as the pattern of the mixture of irregular lines and 
irregular points in Fig. 9(c), the energy of artifacts in the SRF can be spread 
out more as shown in Fig. 9(e), and we can detect the true spike more easily. 
Using the same number of samples as the above two patterns, the sampling 
pattern of irregular points makes the energy of artifacts in SRF distribute 
evenly, and we can identify the true coefficient much more easily.

Fig. 8. (a) and (b) are the same single spike and the 2D sinusoid signal as in Figs. 6(a) and 
6(b), (c) the sampling pattern: irregular lines, the subsample ratio is 25%. (d) Sparse 
samples overlaid on the original sinusoid signal, (e) the SRF of the sampling pattern of 
irregular lines.
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Fig. 9. (a) and (b) are the same single spike and the 2D sinusoid signal as in Figure 6(a) 
and (b), (c) the sampling pattern: mixture of irregular lines and irregular points, the 
subsample ratio is 25%. (d) sparse samples overlaid on the original sinusoid signal, (e) the 
SRF of the sampling pattern of mixture of irregular lines and irregular points.

Fig. 10. (a) and (b) are the same single spike and the 2D sinusoid signal as in Figure 6(a) 
and (b), (c) the sampling pattern: irregular points, the subsample ratio is 25%. (d) sparse 
samples overlaid on the original sinusoid signal, (e) the SRF of the sampling pattern of irregular 
points.

Fig. 10 shows that the sampling pattern of irregular points allow the 
controllable artifacts to distribute evenly in SRF, making the amplitudes of 
artifacts much smaller than that  of the true coefficients.  The SRF in Fig. 
10(e) most resembles the SRF of Nyquist full sampling in Fig. 6(e), and has 
the  highest  resolution  in  the  wavenumber  domain  among  these  three 
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sampling  patterns.  Among  these  three  sampling  patterns,  it  is  worth  to 
mention that SRF from the mixture of irregular lines and points has weaker 
artifacts than that of irregular lines, but stronger than that of the irregular 
points,  so  the  irregular  line  pattern  has  the  least  performance,  then  the 
mixture pattern is in the middle, and the irregular point pattern performs best

SRF  can  rank  the  performance  of  different  sampling  patterns  and 
indicate  the  expected  reconstruction  accuracy  related  to  these  sampling 
patterns.  Based on SRF, we will  analyze the six reconstruction strategies 
from sparse acquisition.

PREDICTION OF RECONSTRUCTION ACCURACIES FROM SPARSE 
ACQUISITIONS

Based on the sampling pattern analysis using SRF, we rank the total 
six reconstruction strategies from two irregular acquisitions. We can predict 
the accuracies of reconstructed data and rank them as in Table 1.

For the irregular line acquisition in the left  column of Table 1, the 
reconstruction  from vertical  and horizontal  subsets  should  have  the  least 
accuracy (one star) since their sampling pattern is irregular lines. It is also 
expected that the reconstruction from a whole set has better accuracy (two 
stars), since we involve more data to generate the reconstruction result. For 
the  irregular  point  acquisition  in  the  right  column  of  Table  1,  three 
reconstruction strategies show interesting differences in the reconstruction 
accuracy.  When  we  divide  the  sparse  samples  into  vertical  subsets,  the 
sampling pattern for each cross-section is analogous to irregular lines (Fig. 
8),  which  has  the  least  spectral  resolution  in  the  wavenumber  domain. 
Therefore, the reconstruction using these cross-sections should be the least 
accurate  (one  star).  If  we  divide  samples  into  horizontal  subsets,  the 
sampling pattern for each subset is equivalent to that of irregular points (Fig. 
10),  which  has  the  best  spectral  resolution  function.  Therefore,  the 
reconstruction accuracy using time-slices should be the best (four stars).

The sampling pattern with a mixture of irregular lines and points in 
the middle of right column has an interesting but counter-intuitive property. 
On one hand, when we use the whole 3D dataset  for  reconstruction,  we 
expect to achieve the best reconstruction accuracy since we input as much 
data as possible. One the other hand, the sampling pattern analysis above 
shows that this mixture sampling pattern has an intermediate performance 
among the three sampling patterns, and can only reach the middle level of 
reconstruction accuracy. We predict that sampling patterns contribute more 
to reconstruction than the amount of data. We will test this prediction later 
on 3D seismic dataset.
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Table 1. Two sparse acquisitions with irregular line and irregular point are in the two 
columns. The three different reconstruction strategies are in the rows. These six 
reconstructions are cataloged into different sampling patterns. Based on the SRF analyses, 
we predict the quality level of the reconstructed data and mark the reconstruction accuracy 
with stars.

In addition, we have several predictions for each row in Table 1. For 
the reconstruction strategy with vertical  subsets  in  the first  row,  the two 
acquisitions should have the similar reconstruction accuracy (one star) since 
both of them have the sampling pattern of irregular lines. When we use the 
reconstruction strategy with a whole set in 3D, we input the same amount of 
data, but employ different sampling patterns. Compared with the sampling 
pattern  of  irregular  lines  in  the  irregular  line  acquisition,  the  sampling 
pattern of reconstruction strategy in irregular point acquisition is analogous 
to  the  mixture  of  irregular  lines  plus  irregular  points.  Thus,  the  mixed 
sampling  pattern  in  sparse  point  acquisition  should  have  better 
reconstruction accuracy. The results are more interesting when we use the 
reconstruction  strategy  with  horizontal  subsets.  The  reconstruction  result 
with such subsets in the irregular point acquisition should be the best among 
all six reconstruction results.

In  summary,  we  have  analyzed  two  types  of  sparse  acquisition 
designs, which are suitable for different physical configurations of receivers. 
For the cabled receivers which can only been deployed in the pattern of 
irregular  lines  such  as  ocean  bottom  cables  (OBC),  the  reconstruction 
strategy  using  a  whole  set  in  3D  would  produce  better  result.  For  the 
scattered receivers which can be arranged in the pattern of irregular points 
such  as  ocean  bottom  nodes  (OBN),  the  reconstruction  method  using 
horizontal subsets should produce the best reconstruction accuracy.

Moreover, there are two advantages to the reconstruction strategy by 
dividing the  sparse  samples  into  horizontal  subsets  in  the  irregular  point 
acquisition. The first is that the subsets of time slices generate the sampling 
pattern with a high resolution in the wavenumber domain, and can facilitate 
the most accurate reconstruction of the 3D seismic volume. In contrast to 
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reconstruction in 3D using all sparse data samples, the reconstruction by 2D 
time slices solves a 3D problem with multiple 2D problems. As a results, 
this approach is also computationally much more efficient.

RECONSTRUCTION TESTS AND IMAGE DEMONSTRATIONS

Following the sampling pattern analysis and reconstruction accuracy 
predictions in Table 1, we now demonstrate and verify the predictions using 
a  synthetic  SEAM  seismic  data  set  (Oppert  et  al.,  2017).  We  first 
demonstrate  the  predictions  in  Table  1  using  one  shot  gather  by 
implementing  different  reconstruction  strategies  from  two  sparse 
acquisitions. We will then apply reconstructions to all simulated sparse shot 
gathers, implement RTM, and compare the accuracies of these images.

Shot gather reconstructions

We first test different reconstruction strategies using equation 1 on one 
shot gather and compare the accuracies of these reconstructions. ε is set to be 
zero since SEAM data has  no noise. In the case of noisy data, L-curve 
(Hansen, 1992) is a good approach to estimate the ε value. In this paper, we 
use total variation as the transform operator and logarithmic barrier method as 
optimization algorithm as stated earlier.

Fig. 11(a) shows a 3D shot gather from SEAM data, and Figs. 11(b) and 
11(c) are one time-slice and one cross-section. We will reconstruct this 3D shot 
gather by using only 25%  of the full receivers to simulate low-cost 
acquisitions. We deploy these receivers to form irregular line or irregular point 
acquisition as illustrated in Fig. 1. We then obtain three reconstructed seismic 
shot gathers from each of the two sparse acquisitions. The total of  six 
reconstructed shot gathers are displayed at the same time-slice in Fig. 12 and 
in a cross-section in Fig. 14.

In  Fig.  12,  the  reconstructions  in  the  left  column  come  from  the 
irregular line acquisition, and the reconstructions in the right column come from 
the irregular point acquisition. Meanwhile, the reconstructions using the vertical 
subsets are shown in the first row, the  whole set in the second row, and 
horizontal subsets in the third row. We have already done theoretical analyses 
about the reconstruction accuracy shown in Table 1, and have ranked the 
expected  reconstruction  accuracies. Here  we  verify  the  prediction  with  the 
reconstruction results from one shot gather.

We can observe that the reconstructed seismic events are blurry in Figs. 
12(a),  12(b) and  12(e),  since  the  sampling  pattern  is  irregular  lines  in  these 
reconstructions. These reconstructions are the least accurate, which is consistent 
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with our predictions in Table 1. Although the corresponding sampling pattern 
in Fig. 12(c) is irregular lines, we obtain a better reconstruction result because 
we input more data into the compressive sensing algorithm  when using the 
whole set. In contrast to Fig. 12(c), Fig. 12(d) treats all samples as one set in 
3D, the corresponding sampling pattern is analogous to a mixture of irregular 
lines and irregular points. As predicted, the reconstruction in Fig. 12(d) has a 
better  accuracy than that in Fig. 12(c). Fig. 12(f) is the reconstruction from 
dividing samples into horizontal subsets when using irregular point acquisition. 
The sampling pattern in each time slice is equivalent to irregular points, so we 
can obtain the most accurate  reconstruction. We can observe that the 
reflection events are reconstructed well and the  reconstruction accuracy in 
Fig. 12(f) is the best.

Fig. 11. (a) SEAM 3D shot gather, (b) map-view of one time slice, (c) cross-section view.
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Fig. 12. Map-view of reconstruction examples of 3D single shot gather from 25% receivers. On the 
left column is irregular line acquisition, on the right column is irregular point acquisition. 
The reconstructions use the vertical subsets in the first row, the whole set in the second row 
and the horizontal subsets in the third row.
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Fig. 13. Detailed display of reconstruction at reservoir locations from Figure 12. On the left 
column is irregular line acquisition, on the right column is irregular point acquisition.  The 
reconstructions use the vertical subsets in the first row, the whole set in the second row and 
the horizontal subsets in the third row.

Fig. 13 is a zoomed-in map-view display of reflection events near the 
reservoir. We can  observe that three reconstructions in the left column from 
irregular line design have slight  stripe-like artifacts, especially the 
reconstructions in Figs. 13(a) and 13(e). The reason is that the irregular line 
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sampling  acquires  redundant  information  along  its  lines,  but  misses 
information  across  the  lines.  Therefore,  irregular  lines  generate  poorer 
reconstructions. In contrast, the irregular point sampling uses the same number 
of samples, but acquire more information than does the irregular line sampling with 
the same number of samples.

Fig.  14. Cross-section  view  of  reconstruction  examples  of  3D  single  shot  gather  from  25% 
receivers. On the left column is irregular line acquisition, on the right column is irregular 
point acquisition. The reconstructions use the vertical subsets in the first row, the whole set 
in the second row and the horizontal subsets in the third row.
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Fig. 15. Detailed display of reconstruction at reservoir locations from Fig. 14. On the left 
column is irregular line acquisition, on the right column is irregular point acquisition.  The 
reconstructions use the vertical subsets in the first row, the whole set in the second row and 
the horizontal subsets in the third row.
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The reconstructed 3D shot gathers shown by the cross-section view in 
Fig. 14 are also consistent with Table 1. We can observe that the reflection 
events containing the reservoir  information become clearer in the 
reconstructions as indicated by Table 1. The sampling pattern in Figs. 14(a), 
14(b), and 14(e) is equivalent to irregular lines and has the least resolution in 
the  wavenumber  domain. Therefore,  as  predicted,  the  reconstructed  hyperbolic 
reflection events  are blurry. The sampling pattern in Fig.  14(d) is  analogous to a 
mixture of irregular lines and irregular points. As predicted, the reconstruction 
in Fig. 14(d) has an intermediate accuracy. The sampling pattern in Fig. 14(f) 
is irregular points, and the hyperbolic reflection events in this reconstruction 
shows up most clearly among the six reconstructions. The sampling pattern has 
a significant influence on the reconstruction  accuracy. There is a trade-off 
between the amount of data and sampling pattern. If we input more data but 
have to use a sampling pattern with poor spectral resolution, we will degrade 
the reconstruction results.

Fig. 15 is a zoomed-in display of reflection events near the reservoir 
between 3 s and 4 s. We can observe that, with different sampling patterns, 
the reflection events appear  differently in the reconstructions. Meanwhile, 
stripe-like artifacts showing up in all reconstructions is caused by the big 
gap between  lines.  This  phenomenon is also illustrated in the papers by 
Pawelec et al. (2021) and Zhang (2021). To further  improve the 
reconstruction results, more investigations on SRF and different combinations of 
compressive sensing components could be needed. However, among all the 
results in  Figs. 15, the reconstruction using the horizontal subsets from 
irregular point acquisition has the least signal leakage and the smallest residual, 
and shows more clearly the hyperbolic shape of the reflection events. There 
is also an added benefit of reduced  computational cost when reconstructing 
using these subsets.

Migration imaging

The preceding subsection has demonstrated that we can reconstruct 
shot gathers from sparsely located receivers. The goal of obtaining these 
shot gathers is to image the sub- surface. We therefore examine the feasibility 
of  performing migration  imaging  using  such  reconstructed gathers in this 
section.

We repeat the reconstructions for 15 SEAM 3D shot gathers using 25% 
receivers with all shots along a line, and obtain six sets of reconstructed data. 
Next, we apply reverse time migration (RTM) to the data with full receivers 
and to these six different sets of reconstructed shot gathers. For brevity and 
for ease of presentation, we extract 2D shot  gathers from these 3D gathers 
and apply a 2D RTM imaging. We obtain two sets of 2D  RTM imaging 
results. The first section is located at a part of a reservoir that is continuous 
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(Fig. 16); and the second cuts through the reservoir with a normal fault (Fig. 
17).

Fig. 16. Images from SEAM synthetic data by using reverse time migration to illustrate the 
reservoir location. (a) the original reservoir image, (b), (d) and (f) are reservoir images using 
different reconstructed methods from irregular line acquisition. (c), (e) and (g) are reservoir 
images using different reconstructed methods from irregular point acquisition. The  reservoir in 
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Figure (g) using horizontal subsets from irregular point acquisition is the most accurate.

Fig. 16 illustrates the comparison of images with the continuous part of 
the reservoir. Fig. 16(a) is the reservoir image using the full acquisition. Figs. 
16(b), 16(d) and 16(f)  are  the  reservoir  images  using  three  different 
reconstruction strategies from the irregular line acquisition. Figs. 16(c), 16(e), 
and 16(g) are the reservoir images using three different  reconstruction 
strategies from the irregular point acquisition. We can observe that the 
reservoir is obscured and difficult to detect in Figs. 16(b), 16(c) and 16(f), 
because the quality of the data reconstruction is low as predicted in Table 1. 
Based on the previous sampling  pattern analyses, the vertical subset is 
equivalent to irregular lines, the reconstruction is  the least accurate and will 
lead to low resolution imaging. Although the sampling pattern is still irregular 
lines, the reservoir image in Fig. 16(d) is better because more data is  input 
into the compressive sensing algorithm. Compared with Fig. 16(d), Fig. 16(e) 
uses the whole set too, but the sampling pattern is mixture of irregular line and 
irregular  points, therefore, the RTM image shows the reservoirs more clearly. 
The reservoir image in Fig. 16(g) is the most clear as we have predicted in 
Table 1. The reason is that the sampling pattern is irregular points when using the 
horizontal subsets in the irregular point acquisition.

We next examine comparison of images of the faulted part of the 
reservoir in Fig. 17. The RTM image using full acquisition is shown in Fig. 
17(a). Figs.  17(b),  17(d)  and 17(f) are the images using three different 
reconstructed strategies from the irregular line acquisition. Figs. 17(c), 17(e) 
and 17(g) are the reservoir images using three different  reconstruction 
strategies from the irregular point acquisition. It is nearly impossible to 
identify a fault in Figs. 17(b), 17(c) and 17(f), and we would likely interpret a 
seismic reservoir  event without the faulting. However, we are able to detect 
the fault in Figs. 17(d), 17(e)  and 17(g). This normal fault can be identified 
most easily in Fig. 17(g). These results are expected from Table 1.

The results in these two sets of images demonstrate the consistence with 
our prediction  in Table 1. For the irregular line acquisition such as when 
using OBC, reconstruction as a whole set is a good choice. For the irregular 
point acquisition such as when using  OBN, the reconstruction using horizontal 
subsets is the best scenario. Therefore, a suitable combination of acquisition design 
and  corresponding  reconstruction  strategy  can  produce  a  better imaging result. 
Moreover, an irregular point acquisition is preferable to an irregular  line 
acquisition, since using horizontal subsets for the reconstruction in the irregular 
point acquisition can improve both accuracy and computational efficiency.
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Fig. 17. Images from SEAM synthetic data by using reverse time migration to illustrate the 
fault location. (a) the original reservoir image, (b), (d) and (f) are reservoir images using different 
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reconstructed methods from irregular line acquisition. (c), (e) and (g) are reservoir images 
using different reconstructed methods from irregular point acquisition. The fault in  Fig. (g) 
using horizontal subsets from irregular point acquisition is the most detectable.
CONCLUSION

We have investigated two types of sparse seismic acquisition designs, 
namely irregular lines and irregular points that simulate respectively OBC 
and OBN. For each acquisition design,  we have also developed different 
compressive sensing reconstruction strategies using different subsets of the 
samples.  Our  sampling  pattern  analyses  based  on  Spectral  Resolution 
Function  (SRF)  can  help  improve  the  acquisition  design  and predict  the 
reconstruction accuracy. Our studies predict that in irregular line acquisition, 
it  is  better  to use the whole dataset  to reconstruct  shot  gathers;  while  in 
irregular  point  acquisition,  it  is  best  to  use  horizontal  subsets  in  the 
reconstruction. The simulations using SEAM seismic dataset to reconstruct 
shot  gathers  and  implement  RTM  demonstrate  the  consistency  with 
prediction from our studies. We demonstrate that the compressive sensing 
acquisition design and compressive sensing post-acquisition reconstruction 
can  use  different  transforms.  A good  combination  of  sampling  pattern, 
transform, and optimization algorithm can reduce the required samples to 
25%. Our  work highlights  the importance  of  the acquisition designs and 
sampling  pattern  analyses  in  the  sparse  acquisition,  and  illustrates  that 
compressive  sensing  acquisition  can  play  an  important  role  in  high 
resolution data acquisition with low cost.
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