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ABSTRACT 

Soufi, Y., Riahi, M.A. and Heidari,  R., 2023. On the performance of Tikhonov, total  
variation  and  balanced  Tikhonov-Total  Variation  regularizations  in  nonlinear  seismic 
cross-hole tomography. Journal of Seismic Exploration, 32: 479-506.

The ill-posed nature of geophysical problems requires the incorporation of an 
appropriate regularization function into the associated optimization framework. Usually, 
the  choice  of  the  regularization  function  depends  on  prior  information  about  the 
properties of the unknown model parameters. As a conventional regularization function, 
Tikhonov regularization fails when reconstructing models with sharp discontinuities. In 
contrast, the first-order total variation regularization (TV) can reconstruct sharp edges or 
models with block-like features. Neither of these regularizations can reconstruct models 
with complex geometry that has both smooth and blocky features.  In  this  study, we 
investigate different  regularization functions  for  nonlinear  seismic travel-time (cross-
hole)  tomography,  where  the  model  parameter  is  slowness.  We use  the  alternating 
direction  method  of  multipliers  (ADMM)  to  solve  the  optimization  with  TV 
regularization. Also, a balanced combination of Tikhonov-TV regularizations in either its 
conventional form or new version with automatic balancing parameter is proposed for 
the  nonlinear  traveltime  inversion.  Using  synthetic  examples,  we  first  show  the 
robustness of the TV regularization solved by ADMM and also the good performance of 
the Tikhonov-TV regularization in recovering models with smooth blocky structures.

KEY WORDS: nonlinear travel-time tomography, Tikhonov-regularization,
  total variation, alternating direction method of multipliers.
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INTRODUCTION

Seismic travel-time inversion (or tomography) is considered one of 
the conventional methods for building velocity models, the results of which 
can  be  used  for  seismic  migration  purposes  or  as  initial  models  for 
advanced inversion techniques  such as  full  waveform inversion (Virieux 
and  Operto,  2009).  The concern  of  this  study  is  kinematic  transmission 
tomography, which is inherently nonlinear, and the associated problem is 
challenging (Rawlinson and Sambridge, 2003). The travel-time tomography 
can be posed as an optimization problem in which the goal is to estimate 
unknown  model  parameters  (e.g.,  velocity)  by  defining  an  objective 
function  based  on  the  data  misfit  error  (e.g.,  least  squares  metric) 
(Sebudandi and Toint, 1993). Similar to the various geophysical problems, 
travel time inversion is a non-unique and ill-posed problem (Gholami and 
Siahkoohi,  2010).  Regularization is  a  tool to  deal  with the ill-posedness 
problem by adding a set of constraints (or regularization functions) to the 
objective function. In this way, some prior information about the model is 
included in the problem formulation resulting in reducing the degree of non-
uniqueness (Hansen, 1998, Kabanikhin, 2008; Aster, 2018) can be imposed. 
A simple way to deal with the ill-posedness of the problem and the poor 
conditioning of the Hessian operator is to add a positive value to the main 
diagonal of the Hessian of the least squares solution. From a mathematical 
point of view, this is equivalent to increasing the eigenvalues of the operator 
by  the  same  amount.  In  this  way,  the  problem  is  more  tractable.  The 
optimization  for  this  case  is  called  damped  least  squares  or  zero-order 
Tikhonov regularization.
 

Another simple and classical regularization approach is to bias the 
model  toward  smooth  behavior  using  an  L2  norm-based  regularization 
function  or  Tikhonov  regularization  (Tikhonov  and  Arsenin,  1977). 
However, Tikhonov regularization blurs the sharp discontinuities due to the 
short-tailed  nature  of  the  Gaussian  distribution  (Gheymasi  et  al.,  2016). 
Another class of the regularization approaches is based on the L1 norm (or a 
semi-norm) of the solution and induces sparsity in the solution (e.g., Rudin 
et  al.,  1992;  Figueiredo  et  al.,  2007;  Goldstein  and  Osher,  2009).  Total 
variation regularization (TV) (Rudin et al., 1992), based on the blockiness 
assumption,  has  become  an  important  tool  in  image  processing  (e.g., 
Chartrand and Wohlberg, 2010) or seismic applications (e.g., Aghamiry et 
al.,  2019a;  Liu  et  al.,  2021).  Unlike  the  Tikhonov  regularization,  TV 
regularization is an edge-preserving method and can be used for parameter 
estimation problems with discontinuities.  Promoting sparsity with regard to 
a  single  higher-order  derivative  of  the model  is  usually  undesirable;  for 
example,  TV2  (second-order  TV  regularization)  encourages  piecewise 
linear solutions. However, combinations of different model derivatives have 
recently  piqued  the  interest  of  researchers,  and  the  higher-order  total 
variation,  as  well  as  the  original  first-order  variation,  serve  as  the 
foundation of such techniques (Stefan et al., 2010; Benning et al., 2013). 
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Total Generalized Variation (TGV) regularization, also known as second-
order  Total  Generalized  Variation  (TGV),  has  been  applied  to  Magnetic 
Resonance  Imaging (MRI),  which aims  at  reconstructing  both  smooth  a 
blocky features of the model with a good degree of accuracy (Gong et al., 
2018).  TGV regularization  has  also  been  used  in  EIT reconstruction,  in 
which it creates more realistic images than TV regularization (Gong et al., 
2018).

From  a  statistical  perspective,  different  statistical  properties  of 
smooth and sharp media impede individual regularizations to recover both 
smooth and sharp features simultaneously. Gholami and Hosseini  (2013) 
proposed  a  novel  approach  that  considers  both  Tikhonov  and  TV 
regularizations in a balanced framework to reconstruct piecewise smooth 
models (piecewise constant models embedded in a smooth background). In 
their work, the model in the optimization problem is divided into two terms, 
one for smooth behavior and another for piecewise constant features. Then, 
a  suitable  regularization  function  (second-order  Tikhonov and  first-order 
TV)  is  considered  for  each  term.  This  new  regularization  function  can 
handle the blurriness imprint of Tikhonov and the staircase imprint of TV.

In this study, we focus on the regularization of nonlinear traveltime 
tomography,  evaluating  Tikhonov,  TV,  and  their  balanced  combination 
(Tikhonov- TV). To apply the regularization, the original nonlinear problem 
is transformed into a locally linear problem by taking advantage of Occam's 
inversion (Constable et al., 1987). To deal with the non-differentiability of 
the  TV-norm,  we  take  advantage  of  the  alternating  direction  method  of 
multipliers  (ADMM)  (Boyd,  2010),  which  replaces  the  constrained 
optimization  associated  with  the  TV-norm  with  the  corresponding 
augmented  Lagrangian  function.  Then,  ADMM decomposes  the  original 
problem  into  easy-to-handle  subproblems.  Other  methods  for  tackling 
constraint optimization problems, such as the L1 norm, can also be utilized. 
For example, the split Bregman approach (Goldstein and Osher, 2009) is 
equal to ADMM for basis pursuit and related issues. The types of problems 
that  ADMM  and  split  Bregman  can  tackle  are  fundamentally  different. 
ADMM can be used to solve a wide range of problems, including ones with 
linear constraints. Split Bregman, on the other hand, is especially effective 
for  problems  involving  the  minimization  of  the  sum  of  two  convex 
functions, one of which is an L1 norm (Boyd, 2010).

We use the ADMM method for  solving the least  squares  problem 
involving either TV or Tikhonov-TV regularizations. Regularized nonlinear 
travel time tomography is studied for different scenarios. In the following, 
we first give a brief explanation of the different regularization functions and 
then investigate their performance in the numerical sections using synthetic 
experiments.
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METHOD AND THEORY

In  this  section,  we  briefly  explain  the  regularization  method  in 
seismic tomography. In seismic tomography, the goal is to reconstruct the 
medium parameter  using  recorded  seismic  waveforms  (e.g.,  first  arrival 
times).  The  associated  optimization  procedure  is  iterative,  and  in  each 
iteration, we compute the seismic response to update the model parameter. 
In travel-time tomography, the travel-time data  is calculated as (Sambridge 
and Kennett, 1990):

(1)

where L is the path of the ray generated from the source to the receiver, and 
the integration path depends on , the velocity of the medium. The relation in 
(1) is a nonlinear equation and its solution is derived in the frame of  the 
eikonal equation (Aki and Richards, 1980):

(2)

where  T  is  the  traveltime  function  or  phase  factor.  There  are  several 
methods  for  solving  the  corresponding  eikonal  equation  such  as  finite 
difference-based methods (Vidale,  1988;  Hole  and Zelt,  1995;  Buks and 
Kastner, 2004). In this study, we implemented the Fast Marching Method 
(FMM)  (Sethian,  1996,  1999;  Sethian  and  Popovici,  1999),  which  is  a 
numerical method for solving the boundary value problem of the eikonal 
equation.  In this method, the medium is discretized, and a fixed velocity 
value is assigned for each grid (discrete point in the model) based on an 
upwind  finite  difference  approximation  of  the  gradient,  in  which  the 
algorithm complexity (how long an algorithm would take to complete given 
an input of size N) is O(N log N), where N denotes the number of the grids 
in the model (see Sethian, 1999, for a detailed review). Suppose we have a 
forward modeling kernel operator  that computes the synthetic data (first 
arrival  time)  given  the  unknown  model  parameters,  .  Now,  given  the 
observed data, , the   problem can be put into a compact algebraic form 
describing a nonlinear system of equations:

 (3)

Due to the high scale of geophysical applications, eq. (3) is outlined 
in the context of local optimization, where the initial model is iteratively 
refined  to  minimize  a  predefined  criterion  called  the  cost  function.  The 
optimal solution is then the minimizer of the cost function.
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 The success of local optimization depends on how close the initial 
model is to the optimal solution (Nocedal and Wright, 2006). The use of 
regularization in optimization is well-documented for linear problems. Here 
we  are  dealing  with  non-linear  travel-time  tomography.  For  a  simple 
implementation  of  regularization,  one  can  take  advantage  of  Occam's 
inversion  for  nonlinear  problems.  Occam's  inversion  involves  a  local 
linearization of the problem during iterations using the Taylor expansion 
(Constable et al., 1987):

, (4)

where  is the Jacobian matrix that describes the sensitivity of modeled data 
to  the  model  parameters  and   denotes  the  model  perturbation.  By 
substituting eq. (4) into eq. (3) we have:

. (5)

Now, we have a linear equation concerning . Note that , and we have:

, (6)

     . (7)

We can see that   is linear concerning .  In what follows we use   and 
to have a consistent notation with linear inverse problem literature. 

Note that in eq. (1), when the structure of the operator  is independent 
of the model parameters in the current iteration (k), we have a linear travel-
time inversion. In the Tikhonov regularization, the desired model we seek 
has the smallest seminorm as , where  is a finite difference operator and  is  
the L2 norm (or Euclidean norm):
 
, (8)

where  is the regularization parameter that controls the tradeoff between the 
data misfit term and the model regularization term. A high value of  gives 
more weight to the model term and vice versa. Problem (8) is known as 
Tikhonov  regularization  (Tikhonov  and  Arsenin,  1977)  or  damped  least 
squares (for  identity matrix). Tikhonov regularization deals with models 
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containing mainly smooth features and is popular because of its simple and 
straightforward implementation (Hansen, 1998).

Total Variation regularization

In total  variation regularization,  we seek a  solution with a  certain 
structural shape (i.e., peace-wise). The Optimization with TV functional is 
encapsulated by the following formulation (Rudin et al.,  1992; Goldstein 
and Osher, 2009):
 

 (9)

which uses the L1-norm of the model gradient  as  a  regularization term, 
where  is arbitrary linear transformation matrix (finite difference operator) 
and  is a convex set bounded by upper and lower values of : (Maharramov 
and Levin, 2015; Aghamiry et al., 2019):

. (10)

Problem (9) is also referred to as a generalized lasso (Boyd et al., 
2011, Tibshirani and Taylor, 2011), in which the goal is to find an optimal 
vector  of  model  parameters  by  promoting  blocking  through  either  an 
isotropic or anisotropic TV norm and fitting the data in the least squares 
sense. In the isotropic sense, the TV function reads:

, (11)

 
where   and  are the first-order difference operator in the x-and z directions, 
respectively.   The  objective  function  in  (9)  is  non-differentiable  and  its 
solution  can be obtained using,  for  example,  iteratively  reweighted least 
squares (IRLS) (Scales et al., 1988), Split-Bregman (Goldstein and Osher, 
2009) or ADMM (Wahlberg et al., 2012).

Balanced Tikhonov-TV regularization 

In balanced Tikhonov-TV regularization, the following regularization 
function has been proposed (Gholami and Hosseini, 2013; Aghamiry et al., 
2019b):
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, (12)

where ,  and  are first second-order finite difference operators, respectively. 
Note that the regularization function in (12) is a balanced combination of 
semi-L2 and L1 norms, where the constant value α determines how much 
the regularization function weights each part. We assume here that model () 
is  a combination of  two features;  one with smooth behavior  ()   and the 
second with peace-wise blocky structure (). Therefore, this regularization is 
suitable  for  piecewise-smooth  models.  Moreover,  the  regularization 
function in (12) is general, because if  , Tikhonov regularization is obtained 
and    leads to the TV –regularization. The objective function of Tikhonov-
TV regularization in eq.(12) can be efficiently solved by ADMM (see the 
Appendix). 

NUMERICAL EXAMPLES

With the vector of first arrival times as the observation data, the first 
step in travel-time tomography in the context of nonlinear inversion is to 
construct the forward operator that solves the travel-time equation. Unlike 
linear  travel-time  tomography,  where  the  operator  depends  only  on  the 
source-receiver geometry, in nonlinear inversion, the input to this operator 
is the vector of model parameters in the predefined grids (or meshes) and 
source-receiver geometry. While in linear travel-time tomography, we are 
dealing with the linear path of the rays from the source to the receivers 
regardless  of  the  properties  of  the  medium,  in  nonlinear  ray-based 
tomography  the  ray  path  changes  in  the  presence  of  an  anomaly.  For 
example, for the synthetic model shown in Fig. 1, we performed ray tracing 
with 21 sources (left hole) and 21 receivers (right hole).  Note that for all 
models  shown  in  the  following  the  unit  of  colorbars  is  m/s.  The  rays 
generated  by  the  sources  are  interested  to  go  through  an  anomaly  with 
higher velocity () (Fig. 2).
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Fig. 1. Synthetic 2D velocity model.

It is worth mentioning that we usually look for anomalies in the real 
medium.  The  presence  of  such  anomalies  changes  the  ray  path  and 
consequently the arrival times. Fig. 3 compares to the modeling shown in 
Fig.  2.  The  difference  in  travel  time  difference  between  the  linear  and 
nonlinear modeling can be seen. It is important to simulate the real world, 
otherwise, such differences will have a negative effect as noise. However, 
performing linear tomography is more manageable than the nonlinear case. 
A comparison  between  the  inversion  results  of  linear  data  using  linear 
tomography  and nonlinear  data  using nonlinear  inversion tomography  is 
given  in  Fig.  4,  which  highlights  a  better  image  obtained  by  linear 
tomography.  The linear  and nonlinear  inversion problem is  solved using 
Occam and Gauss-Newton methods, respectively.
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Fig.  2. The  demonstration  of  ray  tracing  for  linear  (top)  and  nonlinear  operators 
(bottom).  The black  arrow indicates  the change of  the  ray path  facing high-velocity 
anomaly.

Fig. 3. Comparison between first arrival times obtained by linear modeling (red curve) 
and nonlinear modeling (blue curve). 
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Fig. 4. Comparison between the inversion results of linear (a) and nonlinear inversion 
tomography (b). 

Tikhonov Regularization 

For the synthetic model shown in Fig. 1 and for the observed data 
shown in Fig. 3 (nonlinear case), we performed Occam's inversion using 
Tikhonov  regularization.  One  can  use  a  fixed  damping  constant  for  all 
iterations. However, the problem is still nonlinear and it is recommended to 
start the inversion with a high value of the damping constant and gradually 
decrease it so that at the convergence point the value approaches zero. One 
approach to set the damping constant (or regularization parameter) can be as 
(Gholami and Siahkoohi, 2010):

                        (13)

  

Here, ,    is the value of the regularization parameter at the ()th iteration, and 
is  the  current  estimate  using proposed  methods such  as  the  discrepancy 
principle (Morozov, 1984) or  simply based on a  percentage of  the main 
diagonal  of  the  Hessian  matrix  (). The  most  appropriate  value  of  the 
regularization  parameter  that  strikes  an  appropriate  balance  between  the 
data misfit term and the regularization part is difficult to achieve in practice, 
and  the  situation  becomes  even  more  difficult  in  the  case  of  nonlinear 
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inversion.  In  this  study,  we  evaluate  different  algorithms  based  on 
initialization with different regularization parameters and adjust their value 
during iteration based on the recipe given in (13).

It is worth noting that the condition number of  for this example is of 
order , indicating a high degree of ill-posedness of the original problem. 
Thus, the simple least squares optimization fails. We start the inversion with 
the background model as the initial model. Although, one can cope with the 
ill-conditioning of the problem using the damped least squares approach, 
however, an important step is to enforce some prior knowledge about the 
unknown model parameters.

Fig.  5. Reconstructed  models  obtained  by  Tikhonov  regularization  with  different 
initialization of .

As one of the most commonly used regularization methods, Tikhonov 
regularization is performed with a different regularization parameter (), and 
the results are shown in Fig. 5. From Fig. 5, it can be seen that the Tikhonov 
regularization was able to reconstruct the parts of the model located in the 
null space of the problem, in particular for . We used a first-order Tikhonov 
operator  here.  However,  depending  on  the  problem  and  subsurface 
characteristics, a higher-order finite difference operator may also be used.

Total Variation Regularization
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Next,  TV  regularization  is  assessed  for  this  example.  Here  TV-
regularized objective function is optimized using two approaches: IRLS and 
ADMM. Similar  to  the  previous  experiment,  the  inversion is  performed 
with . The ADMM method is performed within 30 iterations. The penalty 
parameters  are  determined  based  on  trial  and  error  and  due  to  the 
insensitivity of ADMM iteration to the penalty parameter(s) a fixed set of 
parameters can be used during the iterations (Nocedal and Wright, 2006), 
The TV regularization results solved by the ADMM method are shown in 
Fig. 6. It can be seen that for  a nearly perfect reconstruction of the model is 
achieved. Furthermore, for the case of  , a significant improvement of the 
model  update  is  obtained  compared  to  the  first-order  Tikhonov 
regularization (Fig. 5). For a detailed comparison, we extracted the diagonal 
logs (main diagonal of the 2D models) for different , and the results are 
shown  in  Fig.  7  that  demonstrate  a  perfect  agreement  of  the  estimated 
models (blue line) with the true model (red line) for.

 
There are various methods to tackle the non-differentiability of TV 

norms such as the fast iterative soft thresholding algorithm (FISTA) (Beck 
and Teboulle, 2009). Perhaps the most used method is IRLS (Aster, 2018) 
which  addresses  the  problem  by  solving  a  sequence  of  weighted  least 
squares problems via a diagonal weighting matrix as

   

in the left-hand side of the normal equation related to Occam’s inversion:
 
. (14)

Starting from  ,  the values of   are  updated iteratively until  a  good 
convergence point. We performed the inversion with IRLS as well and its 
comparison with ADMM is shown in Fig. 8).

Here we have initialized the inversion with . Figs. 8a and 8b are the 
reconstructed  models  obtained  with  IRLS  and  ADMM,  respectively,  in 
which  a  better  reconstruction  of  the  model  is  obtained  by  the  ADMM 
approach. Also, in Fig. 8c, the model error (the difference between the true 
model and the estimated model) is  shown in terms of least squares as a 
function of iteration number, indicating a better convergence rate of ADMM 
for this example. One can obtain better results with IRLS. However, in this 
example, an identical experiment (and inversion) configuration is used.
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Fig. 6. Nonlinear tomography results using TV regularization solved by the ADMM 
approach. Each figure is related to specific  initialization.
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Fig. 7. Extracted log (diagonal of the original) matrix for the true model (red line) 
and estimated model (from Fig. 6) (blue line).
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Fig. 8. Nonlinear tomography results with TV regularization solved by (a) IRLS and (b) 
ADMM with  initialization. (c) L2 norm of model error (error between true and 
estimated model) versus iteration number.

TV regularization for sparse acquisition 

In geophysical applications, we usually deal with environments that 
are  difficult  to  access.  For  example,  harsh  trains  or  environmental 
constraints and the high cost of data acquisition make dense (or regular) 
data  collection  difficult.  As  a  result,  insufficient  data  may  be  available. 
From an  optimization  perspective,  the  size  of  the  data  space  decreases 
relative  to  the  model  space.  Therefore,  it  is  more  difficult  to  handle 
underdetermined  systems  of  equations.  From  a  physical  point  of  view, 
decreasing  the  number  of  source-receiver  pairs  means  insufficient  ray 
coverage, which can increase the null space of the model. For example, Fig. 
(9)  compares  two  different  cases  of  coverage:  one  with  dense  source-
receiver  spacing and one with only three sources (sparse acquisition).  A 
significant difference in the ray coverage and some regions of the sparse 
acquisition case can be seen.  One of  the applications of  L1 norm-based 
regularizations is dealing with sparse settings (Aghamiry et al., 2020). Such 
problems can be studied using compressive sensing. Here, we are concerned 
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with  the  reconstruction  of  models  in  the  presence  of  an  insufficient 
recording. An experiment is conducted to analyze the performance of TV 
regularization in such scenarios. The results are summarized in Fig. 10 for 
different numbers of sources () and receivers (). T quality of the inverted 
model decreases when we reduce the number of sources and also receivers 
(which means less ray coverage). However, with a number of 3 sources and 
11 receivers, the TV -regularized nonlinear tomography gives satisfactory 
results.

Fig. 9. Comparison between the ray coverage via dense acquisition (left) and sparse 
acquisition (right).
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Fig. 10. The reconstructed model obtained by TV-regularized nonlinear tomography for 
sparse acquisition experiment. The number of sources and receivers are labeled by  and , 
respectively.

Table 1 gathers the model error, , for the models shown in Fig. 10. 

Table 1: The calculated model error for nonlinear tomography with different source (ns)-
receiver (nr) numbers.

Error Number of Receivers (nr) Number of Sources (ns)
33.29 41 11
176.87 21 11
259.60 21 6
314.574 11 6
545.68 11 3
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684.89 6 3

Tikhonov-TV regularization 

Model I

We  have  noted  that  for  the  goal  of  subsurface  imaging,  we  are 
interested in a general regularization function that can cover models with 
both smooth and blocky features. Suppose that the medium whose features 
we wish to estimate both smooth and blocky structures (Fig. 11). In this 
model,  the  low-velocity  anomalies  have  smooth  variation.  In  contrast, 
anomalies with high-velocity velocities contain block-like structures. The 
tomographic acquisition is performed with 25 sources on the left side and 
25 receivers on the right side of the model. We performed nonlinear seismic 
tomography  with  Tikhonov,  TV,  and  Tikhonov-  TV regularizations.  The 
results  of  the  inversion are  shown in Fig.  12.  In  Figs.  12a-c the  results 
obtained with Tikhonov, TV, and their balanced combination via Tikhonov-
TV regularization are demonstrated,
  

It can be seen that the Tikhonov- TV regularization outperformed the 
others. For example, even for blocky features, Tikhonov-TV regularization 
has better performance than TV regularization.  Tikhonov-TV regularization 
was able to reconstruct  both smooth and blocky features simultaneously. 
For  a  more  detailed  comparison,  the  extracted  vertical  logs  at  three 
locations are shown in Fig. 13. Together with the computed model error 
summarized in Table 2, which shows the robustness of the Tikhonov- TV 
regularization. This regularization incorporates the functionality of both the 
Tikhonov  and  TV  regularizations  and  can  be  used  for  other  seismic 
applications.
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Fig. 11. Velocity model containing smooth (low-velocity) features and peace-wise (high 
velocity)  features.  The vertical  log associated with white  dashed line (middle of the 
model) is also demonstrated.
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Fig. 12. Regularized nonlinear tomography results obtained by (a) Tikhonov, (b) TV and 
(c) Tikhonov-TV regularization.
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Fig. 13. Comparison between extracted vertical logs at (from left to right) 

Table 2. The calculated model error for Tikhonov, TV, and Tikhonov-TV regularized 
nonlinear tomography.

Tikhonov-TV TV Tikhonov Method
323.31 504.36 908.38

Model II

The evaluation of various regularization methods is conducted with a 
more realistic model (Fig. 14). A high-velocity anomaly is embedded within 
a smooth baseline velocity in this model. Using ray tracing, the first arrival 
time from the observed data is obtained (Fig. 15). The observed data are 
illustrated  in  Fig.  16.  Nonlinear  travel-time  tomography  is  performed 
utilizing Tikhonov, TV, and Tikhonov-TV regularizations, beginning with a 
velocity model whose value increases linearly from 4000 to 4500 m/s. The 
regularization parameter is set based on trial and error. The inversion results 
after  30  iterations  are  shown  in  Fig.  17,  with  the  results  of  Tikhonov 
regularization (Fig. 17a), TV regularization (Fig. 17c), and Tikhonov-TV 
regularization (Fig. 17e) shown in the left column. Figs. 17b, 17d, and 17f 
depict  the  difference  between the  true  velocity  model  and the  inversion 
results in the left column. On the basis of the difference plot, Tikhonov-TV 
regularization  outperforms  other  regularization  strategies.  In  this  case, 
Tikhonov regularization fails to reconstruct the details of the model. With 
TV regularization,  the  inversion  is  unable  to  recover  the  high-velocity 
anomaly. However, from the different plots, it can be seen that Tikhonov-
TV regularization successfully recovered most of the features of the model.
 

Some extracted velocity profiles depicted in Fig. 18 demonstrate the 
superiority  of  the  Tikhonov-TV regularization,  with  the  blue  and  green 
arrows  representing  the  failure  of  the  TV and  Tikhonov  regularizations, 
respectively.
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Fig. 14. Velocity model 2 and a vertical profile (related to the vertical dashed line) that includes 
both smooth and blocky features.

Fig. 15. The ray tracing for the velocity model is shown in Fig. 14.
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Fig.16. The first arrival time related to the ray tracing shown in Fig. 15.

Fig. 17. Inversion results obtained by the Tikhonov regularization (a), TV regularization 
(c)  and  Tikhonov-TV  regularization  (e).  The  difference  between  true  model  and 
estimated  model  obtained by Tikhonov regularization  (b),  TV regularization  (d)  and 
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Tikhonov-TV regularization (f).

Fig. 18. Comparison between extracted velocity profiles located at   from models shown 
in Fig. 22. Green and blue arrows show the failure of Tikhonov and TV regularizations 
in reconstructing the model.

Fig. 19 depicts a magnified depiction of the selected portion in the 
first  column  of  Fig.  18  for  comparison  purposes.  In  addition,  the  least 
squares  norm of  the  data  misfit  (the  difference  between  calculated  data 
using estimated velocity models during iterations) is shown in Fig. 20. 
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Fig. 19. Magnified image of the rectangle sketched in Fig. 18.

Fig.  20. The  computed  data  misfit  term  versus  iteration  for  different  regularization 
methods.

Noise-contaminated data

Unwanted errors, known as noise, are common in geophysical data. 
The calculated arrival time is the first phase of the waveforms in time-time 
tomography, and it is sensitive to random (Gaussian-distributed) noise or 
operator error during the phase-picking process. When a problem is being 
solved, it is sometimes unstable, which means that a slight change in the 
data will result in a huge change in the reconstructed model. To deal with 
such unwanted conditions, regularization might be used.  Fig. 21 depicts the 
evaluation of various regularization approaches on noise-contaminated data 
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(Fig.  21),  which  has  the  same  description  as  Fig.  17.  According  to  the 
demonstrated inversion results,  corresponding model differences,  and the 
vertical  velocity  profiles  shown  in  Fig.  23,  Tikhonov  regularization  is 
unable  to  reconstruct  the  anomaly  and  Tikhonov-TV regularization  has 
better performance than TV regularization. 

Fig. 21. Comparison between noise-free data and data contaminated by random noise.
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Fig. 22. Inversion results obtained by the Tikhonov regularization (a), TV regularization 
(c)  and  Tikhonov-TV  regularization  (e).  The  difference  between  true  model  and 
estimated  model  obtained by Tikhonov regularization  (b),  TV regularization  (d)  and 
Tikhonov-TV regularization (f).
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Fig. 23. Comparison between extracted velocity profiles located at   from models shown in Fig.  
22.

Tikhonov-TV regularization with automatic balancing parameter

The  balancing  parameter  (α),  which  defines  how  much  the 
regularization function weights each segment, is an important component of 
Tikhonov-TV  regularization.  This  weight  was  set  at   =  0.6α  in  our 
experiments.   However,  this  user-determined  value  necessitates  prior 
knowledge of the model's structure, which is a tough undertaking. Gholami 
and Gazzola (2022) provided a novel way to automatically determine the 
value of α during iterations based on robust statistics.  The concept is based 
on considering  in eq. (11) as outliers (non-Gaussian components) in the 
model  gradient  and  determining  in  a  method  that  distinguishes  between 
Gaussian and non-Gaussian components. The robust z-score is used to find 
outliers.  Gholami  and Gazzola  (2022)  provide  a  full  explanation of  this 
strategy for interested readers.  This new strategy is investigated, and the 
inversion result is given alongside the conventional approach in Figure (24), 
where the difference plot and data misfit error support the effectiveness of 
this novel regularization approach.
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Fig.  24. Inversion  results  obtained  by the  conventional  Tikhonov-TV regularization  (a)  and 
Tikhonov-TV regularization using automatic balancing parameter (c). The difference between 
true model and estimated model obtained by the conventional Tikhonov-TV regularization (b) 
and Tikhonov-TV regularization using automatic balancing parameter (d).

Fig. 25. The computed data misfit term versus iteration for conventional Tikhonov-TV 
regularization  (red)  and  Tikhonov-TV  regularization  using  automatic  balancing 
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parameter (blue).

CONCLUSION 

The current study focused on the regularization of nonlinear travel-time 
tomography.  We  used  Occam's  inversion  and  replaced  the  nonlinear 
problem with a locally linear problem that allows us to use any proposed 
regularization function. The first option was the Tikhonov regularization. 
This  regularization solves the ill-posedness  of  the problem. However, in 
terms of accuracy, we observed that the TV regularization yields models 
with high resolution. In the case of sparse data acquisition, we examined the 
performance of TV regularization. Next, we move to the recently developed 
Tikhonov-TV regularization.  We perform  a  synthetic  experiment  with  a 
synthetic  model containing smooth and blocky features.  We have shown 
that the Tikhonov-TV regularization performs well in reconstructing such 
models.  These  synthetic  experiments  demonstrate  the  superiority  of  the 
Tikhonov-TV regularization,  which can be  used not  only for  travel-time 
tomography  but  also  for  many  geophysical  applications  concerned  with 
imaging  the  physical  properties  of  the  subsurface.  The  Tikhonov-TV 
regularization with the novel determination of the balancing parameter is 
analyzed for the case of nonlinear seismic travel-time tomography, which 
shows great potential for use in real-data applications. Future analysis will 
focus  on finding the  undiscovered challenges  of  regularization  functions 
such as Tikhonov-TV regularization for real data sets.
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APPENDIX 

Tikhonov- TV regularization with ADMM

The constrained problem for the Tikhonov- TV regularized objective 

function reads

,
           Subject to      &  ,

(A-1)

The ADMM iteration for solving the above-constrained problem is 
(See Aghamiry et al., 2019):

 

(A-2)
                          
                             solve via shrinkage operator (A-3)
                           
                            (A-4)

                             (A-5)

                            
(A-6)


